
Lecture Notes on Numerical

Methods for Engineering

(Practicals)

Pedro Fortuny Ayuso

Universidad de Oviedo
E-mail address : fortunypedro@uniovi.es

CC© BY:© Copyright c© 2011–2016 Pedro Fortuny Ayuso

This work is licensed under the Creative Commons Attribution 3.0
License. To view a copy of this license, visit
http://creativecommons.org/licenses/by/3.0/es/

or send a letter to Creative Commons, 444 Castro Street, Suite 900,
Mountain View, California, 94041, USA.

Contents

Chapter 1. A primer on Matlab m-functions 5

Chapter 2. Ordinary Differential Equations 11
1. Cycling race profile 11
2. Numerical Integration of ODEs 16

Chapter 3. Ordinary Differential Equations (II) 23
1. The Lotka-Volterra model 23
2. Epidemic models (SIR) 27
3. Physical systems 28

Chapter 4. Numerical Integration 31
1. The simple quadrature formulas 31
2. Composite rules 33

Chapter 5. Interpolation 35
1. Linear interpolation 35
2. Cubic splines 36
3. Least Squares Interpolation 45

Chapter 6. Linear Systems of Equations 53
1. Exact methods 53
2. Iterative algorithms 56

Chapter 7. Approximate solutions to nonlinear equations 59
1. Bisection method 59
2. The Newton-Raphson method 60
3. The Secant method 62
4. The fixed-point method 63

Appendix A. Program structure 65

3

CHAPTER 1

A primer on Matlab m-functions

Along this course we are going to use constantly a Matlab/Octave
tool for defining complex functions —more complex than the simple
anonymous functions : m-files and functions defined in them.

An m-file is no more than a file whose name ends in .m and contain-
ing a number of Matlab/Octave commands. For example, the following,
if called trial1.m might be called an m-file:

% This is just a simple file

e = exp(1);

b = linspace(-2,2,1000);

plot(b, e.\^b)

Listing 1.1. A rather simple m-file

The power of m-files comes from two properties:

• If they are saved in the PATH directory (which includes the de-
fault Documents/MATLAB) then, running a command with the
name of the file (without the .m extension) runs the contents
of the file. That is, if after saving the above file, one runs

> trial1

then the plot of the function ex for x ∈ [−2, 2] using 1000
points is drawn.
• They can be used to define complex functions.

Instead of just a sequence of commands, one can define a function
inside an m-file. Consider Listing 1.2, which defines a function returning
the two maximum values of a list, in increasing order.

The structure of the file is the following:

(1) Several comment lines (those starting with a % symbol). These
comments describe what the function defined afterwards does.

(2) A line like

function [y1, y2,...] = name(p1, p2,...)

where the word function appears at the beginning, then a
list of names between square brackets (these are the output
variables), an equal (=) sign, then name of the function (in

5

6 1. A PRIMER ON FILES AS FUNCTIONS

Listing 1.2, max2) and a list of parameters (the input parame-
ters) between parentheses.

(3) A sequence of lines of Matlab commands, which implement
the function.

(4) The end keyword at the end.
(5) Finally, the name of the file must be the name of the function

with a trailing .m. For Listing 1.2, it should be max2.m.

A file following all those rules defines a new Matlab/Octave com-
mand which can be used as any other command.

% max2(x)

% return the 2 maximum values in x, in increasing order

% if length(x) == 1, [-inf, x] is returned

function [y] = max2(x)

% initialize: the first element is always greater than -inf

y = [-inf, x(1)];

% early exit test

if(length(x) == 1)

return;

end

% for each element, only do something if it is greater than y(1)

for X=x(2:end)

if(X > y(1))

if(X > y(2))

y(1) = y(2);

y(2) = X;

else

y(1) = X;

end

end

end

end

Listing 1.2. A first m-file defining a function. Save it as max2.m

For example, if one saves the code in Listing 1.2 in a file named
max2.m inside the Documents/MATLAB directory, then one can run the
following commands:

> x = [-1 2 3 4 -6 9 -8 11]

x =

-1 2 3 4 -6 9 -8 11

1. A PRIMER ON FILES AS FUNCTIONS 7

> max2(x)

ans =

9 11

which show that a new function, called max2, has been defined, and
performs the instructions in the file max2.m.

In this course, we are going to use m-files and functions defined
therein continuously, so the student is encouraged to write as many
examples as possible. Learning to program in Matlab/Octave should
be easy taking into account that the students have already undergone
a course on Python.

Remark 1. The main programming constructs we shall need are
included in the Cheat Sheet (ask the professor for it if you do not have
the link). They are the following:

• The if...else statement. It has the following syntax

if CONDITION

... % sequence of commands if CONDITION holds

else

... % sequence of commands if CONDITION does not hold

end

There are more possibilities (the elseif construct) but we are
not going to detail them here.
• The while loop. Syntax:

while CONDITION

... % sequence of commands while CONDITION holds

end

will perform the commands inside the loop as long as the con-
dition holds.
• The for loop. Syntax:

for var=LIST

... % sequence of commands

end

will assign sequentially to var each of the values of LIST and
perform the commands inside the loop.
• Logical expressions. The conditions in if statements and
while loops can be simple expressions (like x < 3, which means
“x is less than 3”) or expressions built with logical operators:
and, or, not or their shortcut versions &&, ||, .

Exercise 1: Implement a function min3 which, given a list as input,
returns its three minimal elements. Use max2 defined above as a guide.

8 1. A PRIMER ON FILES AS FUNCTIONS

—

Exercise 2: Implement a function increases which, given a list as
input, returns 1 if the list is in non-decreasing order and 0 if it is not.
How would you implement this? —

Exercise 3: Enhance the function of Exercise 2 so that it outputs two
values: first of all, the same as increases and the length of the “in-
creasing sequence” at the beginning of the input. Call it increases2.
For example:

> [a,b] = incresases2(7, -1, 2, 3 4)

a = 0

b = 1

> [u,v] = increases2(-1, 2, 5, 8, 9)

u = 1

v = 5

> [a,b] = increases2(3, 4, 5, -6, 8, 10)

a = 1

b = 3

—

Exercise 4: Define a function called positive which, given a list as
input, returns two values: the number of positive (strictly greater than
0) elements in the list and the list of those elements. Examples:

> [a,b] = positive(-2, 3, 4, -5, 6, 7, 0)

a = 4

b = [3 4 6 7]

> [a,b] = positive(-1, -2, -3, -exp(1), -pi)

a = 0

b = []

> [a,b] = positive(4, 2, 1, 3 2)

a = 5

b = [4 2 1 3 2]

would you use a while loop or a for? Why? —

Notice that functions returning several values can be requested to
return any number of them. For example, the function positive de-
fined in Exercise 4 might be requested to return just one value:

> positive(1, 2, -2, 0, 4)

3

> x = positive(-2, 1, 3, 7, 2)

x = 4

or it can be forced to return both. This requires using square brackets
for the assignment of variables:

1. A PRIMER ON FILES AS FUNCTIONS 9

> [n x] = positive(pi, -2, 3, -5, 0)

n = 2

x = [pi 3]

If the function is called without assigning its output to a variable,
it will return just one value. This will be relevant for many of the func-
tions dealing with linear systems of equations (where one usually needs
to know not just the final answer to a problem but the intermediate
steps leading to it).

CHAPTER 2

Ordinary Differential Equations

This practical sessions are devoted to the numerical integration of
ordinary differential equations. We shall mostly deal with one-variable
problems but we might make an incursion into several variables, if time
allows.

1. Cycling race profile

The most important idea to recall is that the derivative y′(x) of a
function of one variable, y(x) at a point x0 is the slope of the graph of
y(x) at (x0, y(x0)). This is so important that we shall take some time
to chisel it on our minds.

Let y′ = (y′0, y
′
1, . . . , y

′
n−1) denote the slopes of the road at different

points in a bicycle race and x = (x0, x1, . . . , xn) the horizontal coordi-
nates of each point. Notice that x is not the list of km marks at each
point but the OX−axis coordinate of each point. Notice also that y′

has one coordinate less than x.
If the race starts at height y0, how would one compute the approx-

imate heights at each point xi for i = 1, . . . , n?
This is an easy example with several possible solutions (depending

on the reader’s preference). The most obvious way to tackle this prob-
lem is by assuming that the slope on each interval [xi, xi+1) is constant
and has value y′i. This way, the height at x1 would be computed as
y1 = y0 + y′0(x1 − x0), because the line passing through (x0, y0) with
slope y′0 has equation

y = y0 + y′0(x− x0).

From here one can now compute the approximate height at x2, using
the same reasoning: y2 = y1 + (x2 − x1)y′1, and iteratively,

yi = yi−1 + (xi − xi−1)y′i−1, for i = 1, . . . , n.

This shows clearly why the initial height y0 is necessary: without it
there is no way to compute y1 and hence, yi for i ≥ 1.

Example 1 A simple example with just 5 nodes. Let a road have

the following list of slopes: (+4%,−2%,+7%,+12%) at the horizontal

11

12 2. ORDINARY DIFFERENTIAL EQUATIONS

coordinates (in km): (0, 2, 5, 7). The road reaches up to km 8 on the
OX axis. The race starts at a height of 850m. Draw a profile of the
race.

This example can be done by hand:

(1) The first stretch is 2km long horizontally and has a slope of
+4%. This means that, if the slope is constant, the road goes
up by 2km×4% = 80m. As the race starts at 850m, after this
stretch, the road will be approximately 850m + 80m = 930m
high.

(2) The second stretch is 3km long horizontally and its slope is
−2%, so that the road goes down by 3km×2% = 60m. Hence,
after this stage the road is 930m− 60m = 870m high.

(3) The third stage is 2km long and has slope +7%. This gives
140m up, so the road ends at 870m+ 140m = 1010m.

(4) Finally, 1km×12% = 120m, so that the road ends at 1010m+
120m = 1130m.

The approximate profile is plotted in Figure 1. —

0 2 4 6 8

700

800

900

1,000

1,100

Horizontal stretch (Km)

H
ei

gh
t

(m
)

Figure 1. Approximate profile of a short race.

Example 2 The same example, with many more data. Construct
x as a vector with 25 components between 0 and 200. Construct now
a random vector y′ with values between −15% and 15% (which are
normal slopes for a road). Choose a height y0 as the starting value.
Compute the successive heights for each xi and draw the profile of the
stage.

1. CYCLING RACE PROFILE 13

A solution to this can be found in Listing 2.1

% A ’stage’ of a cycling race, using random slopes.

% Problem setup.

x = linspace(0, 200, 25);

% Explanation of the next line:

% (Notice that there is ONE slope less than x-coordinates!)

% Take a random value (well, 24 of them) between 0 and 1

% Scale them so that they are between 0 and .30

% Subtract .15 so that they are between -.15 and +.15

yp = rand(1,24) * .30 - .15;

% Initial height (choose your own)

y0 = 870;

% Approximate stage profile.

% 1) List of "rises" or "descents"

h = diff(x).*yp;

% 2) Create the vector of heights, "empty" but for the first one:

y = zeros(1, 25);

y(1) = y0;

% 3) For each "step" do:

% Add to the list of heights the last one computed

% plus the correspoding difference

for s = 1:length(h)

y(s+1) = y(s) + h(s);

end

% 4) Finally, plot the profile of the stage

plot(x,y);

Listing 2.1. Approximate profile of a cycling race, first version.

A possible profile is plotted in Figure 2. —

Of course, the method explained is one way to solve the stage profile
problem approximately. There are more (although with the data that
is available, there are not many more which are reasonable).

Example 3 The same problem can be tackled differently. Notice
that in Example 2 we are using just the slope at the beginning of the
interval, which may be too little information. One might think “why
use the left endpoint and not the right one?”. As a matter of fact, a
more reasonable solution would be to somehow use the information at
both endpoints for each interval. Instead of taking y′i−1 or y′i as the

14 2. ORDINARY DIFFERENTIAL EQUATIONS

0 50 100 150 200
860

865

870

875

Horizontal stretch (Km)

H
ei

gh
t

(m
)

Figure 2. Approximate profile of a long race.

slope for interval [xi−1, xi], one could use the mean value as the “mean
slope” on that interval:

ỹ′i−1 =
y′i−1 + y′i

2
and compute the height at step i as

yi = yi−1 + (xi − xi−1)ỹ′i−1.
Notice (and this is important) that in order to perform these calcula-
tions, we need to know the slope at the last point, so that y′ must have
as many components as x for this method to work.

This leads to the code of Listing 2.2. —

% A ’stage’ of a cycling race, using random slopes.

% Problem setup.

x = linspace(0, 200, 25);

% Explanation of the next line:

% Take a random value (well, 25 of them) between 0 and 1

% Scale them so that they are between 0 and .30

% Subtract .15 so that they are between -.15 and +.15

yp = rand(1,25) * .30 - .15;

% Initial height (choose your own)

y0 = 870;

1. CYCLING RACE PROFILE 15

% Approximate stage profile.

% 1) List of "rises" or "descents".

% We have to use the mean value between y(i-1) and y(i)...

% See how ’end-1’ serves as an index!

yp_means = (yp(1:end-1) + yp(2:end))/2;

% h is the vector of ’vertical differences’

h = diff(x).*yp_means;

% 2) Create the vector of heights, "empty" but for the first one:

y = zeros(1, 25);

y(1) = y0;

% 3) For each "step" do:

% Add to the list of heights the last one computed

% plus the correspoding difference

for s = 1:length(h)

y(s+1) = y(s) + h(s);

end

% This loop is not ’right’, there is a simpler way to do the same:

% y(2:end) = y(1:end-1) + h;

% Which is more ’Matlab’-ish and, in fact, clearer.

% 4) Finally, plot the profile of the stage

plot(x,y);

Listing 2.2. Approximate profile of a cycling race,
“mean value” version.

Exercise 5: Using the codes of Listings 2.1 and 2.2, compare the
solutions to the same problem using both methods; “compare” both
analytically (using absolute and relative differences) and graphically.
—

Exercise 6: Write two m-files, one for each of the methods in ex-
amples 2 and 3. In each file, a function should be defined, taking as
arguments two vectors of the same length, x and yp and a real number
y0. The output should be a vector y containing the heights of the profile
at each point in x. Call them profile euler.m and profile mean.m.

Use them several times with the same data and compare the plots.
Which is smoother? Why?

A sample profile euler.m file might read as Listing 2.3

% profile_euler(x, yp, y0):

%

% Given lists of x-coordinates and yp-slopes and an initial height y0,

% return the heights at each stretch (coordinate x) of a road having

% slopes yp, starting at height y0.

function [y] = profile_euler(x, yp, y0)

16 2. ORDINARY DIFFERENTIAL EQUATIONS

y = zeros(size(x));

y(1) = y0;

for s = 1:length(x)-1

y(s+1) = y(s) + yp(s)*(x(s+1) - x(s));

end

end

Listing 2.3. Sample code for profile euler.m.

—

2. Numerical Integration of ODEs

The previous section was just an introduction to the problem of
numerical integration of Ordinary Differential Equations (ODE from
now on). As we saw in class, we shall consider only1 ODEs of the form

y′ = f(x, y).

We are now going to translate this expression into ordinary language.
First of all, the derivative of a function y(x) the slope of the graph

(x, y(x)) at each point : let y(x) be a differentiable function and x0 a
real number. Then y′(x0) is exactly the slope (as the slope of a road,
the same concept) of the graph of y(x) at (x0, y(x0)).

In Figure 3 the graph of the function y(x) = sin(x) has been plotted

together with the tangent line at (2π
6
,
√
3
2

). Notice how the slope of this
line is 0.5 (as a matter of fact, notice how it goes up by 2 units vertically
along a 4 units long interval) which is exactly the value of y′(x) = cos(x)
at x0 = 2π

6
. This should reinforce the idea that “derivative means

slope.”
With this mindset, the expression

y′ = f(x, y)

can only have an interpretation: “the function y(x) is such that its
slope at each point (x0, y(x0)) is exactly f(x0, y(x0)).” Briefly stated,
“the slope of the curve y(x) at x is f(x, y).”

As in the case of the cycling race, giving the slopes of the road at
each point is not enough to compute the heights: one needs an initial
height in order for the problem to have a definite solution. The same
happens with an ODE: the single statement y′ = f(x, y) cannot be
enough to provide a solution. One needs a piece of data more: the
“initial height” of the graph of y(x). This gives rise to the notion of
initial value problem.

1Or rather, mainly.

2. NUMERICAL INTEGRATION OF ODES 17

−1 0 1 2 3
−1

0

1

2

3
y(x) = sin(x)

y = 0.5(x− 1.047) + 0.866

Figure 3. Graph of y(x) = sin(x) and its tangent at
(

2π
6
,
√
3
2

)
.

Definition 1. An initial value problem is an ODE y′ = f(x, y)
together with a pair (x0, y0) called the initial condition or initial value.

Once an initial value is given for y(x0) at some x0, the ODE y′ =
f(x, y) has a unique solution2.

Example 4 The initial value problem

y′ = y, y(0) = 1,

has as solution the function y(x) = ex. Check this.
If instead of y(0) = 1 one has y(0) = K, then the solution to the

corresponding initial value problem is

y(x) = Kex.

What happens if the initial value is y(1) = 0.5. Is it necessary that
x0 = 0 or can one compute the solution anyway? —

As the reader will have already noticed, in order to state an initial
value problem, one needs the following data:

(1) The function f(x, y), of two real variables.
(2) The pair (x0, y0), that is, two real values, one for the x and

another one for the corresponding y.

However, for a numerical approach, one also needs the network of
x−coordinates on which approximations of y(x) will be computed. As
in the cycling examples above, this may be a vector x of “horizontal

2Under natural conditions which are outside the scope of the practicals.

18 2. ORDINARY DIFFERENTIAL EQUATIONS

positions.” Thus, in order to compute a numerical approximation to
the solution y(x), one requires

(3) A vector x of x−coordinates on which to approximate y(x).

The “solution” to the numerical integration of the ODE will be the
list of values y(x) for each x ∈ x. The first one will be, obviously, y0,
the remaining ones will be approximations to the true solution.

2.1. Euler’s method. The first naive numerical method is Euler’s
algorithm which follows literally Example 2. Let n be the length of the
vector x. Then one can describe Euler’s method as Algorithm 1, which
is as easy as it gets. Notice that x0 and y0 are part of the data.

Algorithm 1 Euler’s method.

for i = 1 . . . n do
yi = yi−1 + (xi − xi−1)f(xi−1, yi−1)

end for
return (y0, y1, . . . , yn)

The statement inside the for loop is exactly the same as for the
cycling race profile: the height at position xi is approximated as the
height at xi−1 plus the slope at this point (which is f(xi−1, yi−1)) times
the horizontal step (which is xi − xi−1). Finally, the algorithm returns
the vector of heights.

Implementing the above as a Matlab m-function should be straight-
forward. However, we are including the complete code in Example 5
for the benefit of the reader. We have called the function euler and,
as a consequence, the file must be called euler.m.

Example 5 Given a function f —which we shall assume is given as
an anonymous function—, a vector x of horizontal positions and an
initial value y0, an m-file which implements Euler’s method for numer-
ical integration of ODEs as a Matlab function may contain the code in
Listing 2.4. We emphasize that the file name name must be euler.m,
otherwise it would not work. —

% Euler’s method for numerical integration of ODEs

% INPUT:

% 1) an anonymous function f

% 2) a vector of x-positions (including x0 as the first one)

% 3) an initial value y0, corresponding to x0

% OUTPUT:

% a vector y of values of the approximate solution at ’x’

2. NUMERICAL INTEGRATION OF ODES 19

function [y] = euler(f, x, y0)

% first of all, create ’y’ with the same length as x

y = zeros(size(x));

% and store the initial condition in the first position

y(1) = y0;

% Run Euler’s loop

for s = 2:length(x)

y(s) = y(s-1) + f(x(s-1), y(s-1)).*(x(s) - x(s-1));

end

end

Listing 2.4. Matlab code for Euler’s numerical
integration method.

Exercise 7: Use the function euler just implemented to solve nu-
merically the following initial value problems. Use as many points as
you wish (not more than 100, though) when not specified. Plot the
solutions as you compute them.

• For x ∈ [0, 1], solve y′ = 2x with y(0) = 1. Use 10 points.
Plot, on the same graph, the true solution y(x) = x2 + 1.
• For x ∈ [0, 1], solve y′ = y with y(0) = 1. Use 15 points. Plot,

on the same graph, the true solution y(x) = ex.
• For x ∈ [0, 1], solve y′ = xy with y(0) = 1. Plot, on the same

graph, the true solution y(x) = e
x2

2 .
• For x ∈ [−1, 1], solve y′ = x+ y with y(−1) = 0.
• For x ∈ [−π, 0], solve y′ = cos(y) with y(−π) = −1.
• For x ∈ [1, 3], solve y′ = y − x with y(1) = −1.

—

However, Euler’s method is not exactly the best way to approximate
solutions to ODEs. As the first three initial value problems in Exercise
7 show, solutions computed using Euler’s method are usually below
the true solution if this is convex (or above it, when concave). This is
because convexity means y′(x) is an increasing function (and concavity
means y′(x) is decreasing), so that Euler’s algorithm is always short of
the true solution. This lack of precision can be overcome partly using
an intermediate point instead of the left endpoint of the interval, which
is modified Euler’s method.

2.2. Modified Euler’s method. Instead of using the value of
f(x, y) at the left endpoint of each interval, one can perform the fol-
lowing “improvement:”

(1) Assume yi−1 has been computed.

20 2. ORDINARY DIFFERENTIAL EQUATIONS

(2) Let k = f(xi−1, yi−1) (the slope of Euler’s method).
(3) Let x̃ = xi+xi−1

2
be the midpoint of [xi−1, xi].

(4) Let z = k
2
(xi−xi−1) be half the vertical step corresponding to

Euler’s approximation.
(5) Let r = f(x̃, yi−1 + z) be the slope described by f(x, y) at the

midpoint of Euler’s approximation, that is: (x̃, z).
(6) Finally, yi = yi−1 + r(xi− xi−1) is the next approximate value

of the solution.

Although the description seems confusing, the above method can
be described as follows: “Use Euler’s method to compute the next
midpoint, then use the value of f at this midpoint as the slope at the
present point.” So, instead of using the slope at the left endpoint,
one uses the slope at some “midpoint” in the hope that it will give a
better approximation. As a matter of fact, this happens in most cases.
Formally, the above could be described with Algorithm 2.

Algorithm 2 Modified Euler’s method.

for i = 1 . . . n do
k = f(xi−1, yi−1)
x̃ = xi−1+xi

2

z = k
2
(xi − xi−1)

r = f(x̃, yi−1 + z)
yi = yi−1 + r(xi − xi−1)

end for
return (y0, . . . , yn)

Notice how f(x, y) needs to be evaluated twice in this new algo-
rithm. This is essentially what gives the enhanced accuracy of this
method. As a general rule, the more evaluations of f(x, y) are carried
out (reasonably), the more accurate a method will be, and vice versa:
the more accurate a method, the more evaluations of f(x, y) it will re-
quire. Efficient algorithms for numerical integration of ODEs balance
speed and accuracy.
Exercise 8: Implement modified Euler’s method in an m-file, call it
modified euler.m and use it to solve the initial value problems in
Exercise 7. Compare (graphically and analytically) both approximate
solutions and the exact one in the cases where this is given. Is this
method better or worse? Is it always so or just some times? —

2. NUMERICAL INTEGRATION OF ODES 21

2.3. Heun’s method (“improved Euler”). The third method
for numerical integration of ODEs which we shall explain is the equiv-
alent of the mean-value algorithm for the cycling race explained in
Example 3: use the mean of the slopes at the left and right endpoints
of each interval. This is known as Heun’s or improved Euler’s method.

However, there is a difference with respect to the cycling race ex-
ample. In the race, we already know the slope at the right endpoint : as
a matter of fact, we know the slopes at each point on the x−axis. On
the contrary, if we are given the differential equation

y′ = f(x, y)

and the initial value (x0, y0), we can compute the slope at this point
f(x0, y0) but the question arises: what is the “next point”? There is no
such thing because the solution to the ODE is unknown. We only know
the next x−coordinate, x1 but we lack the y−coordinate (otherwise we
would know the solution to the problem). We need to guess (or, more
precisely, to predict) a value for y1 and then “correct” it somehow.
Heun’s method follows the following mental process:

(1) Start at (x0, y0).
(2) Compute (x1, ỹ1) using Euler’s method as a “guess.” This

requires using k1 = f(x0, y0) as slope.
(3) Compute k2 = f(x1, ỹ1), the slope at Euler’s guess.
(4) Instead of using either k1 or k2, take the mean value of both

slopes, k = (k1 + k2)/2.
(5) Use k as the slope from (x0, y0). That is,

y1 = y0 + k(x1 − x0).
An example should illustrate things a bit.

Example 6 Consider the initial value problem (IVP)

y′ = x− y, y(2) = 0.

and let x = (2, 2.25, 2.5) be a sequence of x−coordinates. Let us use
Heun’s method to find an approximate solution to the IVP at x = 2.25
and x = 2.5.

We need to perform two steps of Heun’s method. We shall detail
the first one and run through the second one.

First step: x0 = 2, y0 = 0.

• Using Euler’s method, one has k1 = f(x0, y0) = 2 (this point
(x0, y0) is the initial condition) and so, ỹ1 = 0+2×0.25 = 0.5.
• Using the previous data, k2 = f(2.25, 0.5) = 1.75.
• The mean value of k1 and k2 is k = 1.875.
• Finally, y1 = y0 + k(x1 − x0) = 0 + 1.875× 0.25 = 0.46875.

22 2. ORDINARY DIFFERENTIAL EQUATIONS

Hence, (x1, y1) = (2.25, 0.46875).
Second step: x1 = 2.25, y1 = 0.46875.
From this data, we get k1 = f(x1, y1) = 1.7812 and ỹ2 = 0.46875 +

1.7812 × 0.25 = 0.91405, so that k2 = f(x2, ỹ2) = 1.5859. This gives
k = 1.6835 and the result is (x2, y2) = (2.5, 0.88962).

Taking into account that the exact solution to the problem is y(x) =
x−e2−x−1, which gives y(2.5) = 0.89347, the relative error incurred is
|0.89347−0.88962|

0.89347
' 0.004, which is rather small (even more if we consider

that the steps are quite large, 0.25 units each). —

Algorithm 3 is a more formal expression of the method.

Algorithm 3 Heun’s method, also called “improved Euler’s” method.

for i = 1 . . . n do
k1 = f(xi−1, yi−1)
ỹi = yi−1 + k1(xi − xi−1)
k2 = f(xi, ỹi)
k = k1+k2

2

yi = yi−1 + k(xi − xi−1)
end for
return (y0, . . . , yn)

Exercise 9: In an m-file, implement Heun’s method with a function
called heun. (Remember that the file must then be named heun.m).
Use it to find approximate solutions to the IVPs of Exercise 7 and
compare these to the ones found using Euler’s and Modified Euler’s.
Which are better? Always? When? —

Exercise 10: Use a spreadsheet (like Excel or LibreOffice Calc) to
implement Euler’s method. Explain how it might be done (and do it)
for the IVPs of Exercise 7. Compare the results with the ones pro-
duced by Matlab/Octave. Can Modified Euler’s and Heun’s methods
be implemented in a spreadsheet? If they can, do so for at least one of
them.

Use the charting utility of the spreadsheet to plot the graphs of the
solutions. —

CHAPTER 3

Ordinary Differential Equations (II)

We are going to work out some examples in this chapter.

1. The Lotka-Volterra model

The first non-trivial differential equation describing a biological sys-
tem which we are going to study is called the “Lotka-Volterra” equa-
tion and is used to model an environment in which two species live,
one which behaves as a prey and the other as its predator.

Let x(t) denote the population of a “prey” species at time t, and
y(t) the population of the “predator” species. The differential equa-
tion describing this model is based on the following (quite simplistic)
assumptions:

(1) The prey species breeds proportionally to its number.
(2) A prey dies only as a consequence of being eaten by some

predator, with some constant probability.
(3) The predator species dies proportionally to its number.
(4) Predators only breed in proportion to their eating the preys.

From item 1 we infer that there is a number α > 0 such that

ẋ(t) = αx(t) + . . .

for some expression instead of the dots. This is an exponential increase
in the number of preys (apart from the interaction with the predators).

From item 3 we conclude that there is a number γ > 0 such that

ẏ(t) = −γy(t) + . . .

for some other (different from the above) expression instead of the dots.
This gives an exponential decrease in the number of predators (in the
absence of feeding).

It is easy to show that the probability of a predator meeting a prey
at some point in space is proportional to the product of the number of
predators and preys. Because not every meeting ends up in a prey being
eaten, we model the probability of this event as βx(t)y(t) (with β > 0)
and because not every feeding of a predator gives rise to breeding, we
model the probability of breeding (for predators) as δx(t)y(t) for some

23

24 3. ORDINARY DIFFERENTIAL EQUATIONS (II)

δ > 0. Hence, we can substitute the dots above by the corresponding
values and get the Lotka-Volterra differential equation:

(1)
ẋ(t) = αx(t)− βx(t)y(t)

ẏ(t) = −γy(t) + δx(t)y(t)

Example 7 Model a Lotka-Volterra system with parameters α = 0.8,

β = 0.4, γ = 2, δ = 0.2 and initial populations x(0) = 18, y(0) = 3.
Use Euler’s method to compute an approximation with a timestep of
0.1 units and compute up to 12 seconds.

We first do it by hand and then shall try to write a general program.
Listing 3.1 is a complicated way to work out this example and plot the
evolution of both populations in time.

% Lotka-Volterra simulation, first version

% Time from 0 to 12 seconds

t=[0:.1:12];

% Create an empty list of the adequate size for both variables

x=zeros(size(t));

y=zeros(size(t));

% Initial values

x(1)=18;

y(1)=3;

% The differential equation (Notice 3 variables)

xp = @(t,x,y) 0.8*x - 0.4*x*y;

yp = @(t,x,y) -2*y + 0.2*x*y;

% Do the Euler step for each time

for k=1:length(t)-1

x(k+1) = x(k) + xp(t(k),x(k),y(k)) * (t(k+1) - t(k));

y(k+1) = y(k) + yp(t(k),x(k),y(k)) * (t(k+1) - t(k));

end

% Finally, plot both species on the same graph

plot(t,x)

hold on

plot(t,y,’r’)

Listing 3.1. A first approximation to the Lotka-
Volterra equations.

Notice how the populations have an increasing and decreasing be-
haviour, with a shift.

Also, with some effort one can verify approximately that the critical
points of x(t) are reached when y(t) = γ/δ and that the critical points
of y(t) happen when x(t) = α/β. (How would you do this? It is not so
easy but not so difficult either).

1. THE LOTKA-VOLTERRA MODEL 25

However, it is known that the Lotka-Volterra system is periodic
(this is something known, not something that we have proved in the
theory classes) and the approximation we have plotted is not periodic
(if one goes on plotting, the graphs become more and more separated
and spiky). This anomaly is due also to the intrinsic imprecision of
Euler’s method. —

It should be easy to realize that the process above can be simplified
if one writes a function to perform Euler’s algorithm with ordinary
differential equations in several variables.

First of all, the expression

ẋ(t) = αx(t)− βx(t)y(t)

ẏ(t) = −γy(t) + δx(t)y(t)

can be written in vector form as(
ẋ(t)
ẏ(t)

)
=

(
f1(t, x, y)
f2(t, x, y)

)
for adequate values of f1 and f2. In general, it does not need to be a
2−dimensional vector: it can be of any size. And, to make things even
more general, one might write the above as:ẋ1(t)...

ẋn(t)

 = F (t, x1, . . . , xn)

where F is a column vector function of n components. Thus, in order
to describe the initial value problem, one needs:

• An n−compoment column vector function of n+ 1 variables.
• The n initial values, one for each xi.

Notice that we work with column vectors, which is the way one usually
writes ordinary differential equations on paper.

One might define then a function eulervector which receives:

• an anonymous function returning a column vector (the F above),
• a vector of time-positions and
• a column vector of initial positions

and which returns a list of column vectors with the same length as the
list of time-positions (that is, a matrix of n rows, as many as variables
and l columns, as many as time-positions).

Example 8 The code in Listing 3.2 shows a possible implementation
of the function eulervector described above.

26 3. ORDINARY DIFFERENTIAL EQUATIONS (II)

% Euler’s method for numerical integration of ODEs, vector version

% INPUT:

% 1) an anonymous function f(t, x)

% of two variables:

% t: numerical

% x: column vector

% 2) a vector T of t-positions (including t0 as the first one)

% 3) a column vector x0 of initial values of x for t=t0

% OUTPUT:

% a matrix of as many rows as x0 and as many columns as T above,

% which approximate the solution to the (vector) ODE given by f.

function [y] = eulervector(f, x, y0)

% first of all, create ’y’ with the adequate size

y = zeros(length(y0),length(x));

% and store the initial condition in the first position

y(:,1) = y0;

% Run Euler’s loop

for s = 2:length(x)

y(:,s) = y(:,s-1) + (x(s) - x(s-1)) * f(x(s-1),y(:,s-1));

end

end

Listing 3.2. A vector implementation of the Euler method.

Notice in the code that the only difference with our previous im-
plementation of Euler’s algorithm, as in Listing 2.4, is the explicit
apparition of the rows in the y vector, both at the beginning, in the
line

y = zeros(length(y0), length(x));

and all the other times, with the colon in the expresssions y(:, ...).
Using this function, the Lotka-Volterra model of Example 7 can be

worked out with the code in Listing 3.3.

% Define the function (same parameters)

% Notice that because x is a vector (albeit a column one),

% one can reference each component with a single index:

f = @(t, x) [0.8*x(1) - 0.4*x(1)*x(2) ; -2*x(2) + 0.2*x(1)*x(2)];

% Set up the time

T = [0:.1:12];

% Initial conditions

X0 = [18; 3];

% Solve

X = eulervector(f, T, X0);

% Plot. Notice how Matlab plots each row using different colours

2. EPIDEMIC MODELS (SIR) 27

plot(T, X)

Listing 3.3. Lotka-Volterra with eulervector.

It should be noted that one no longer uses two different variables, x
and y, but a single “column vector” x, and references each component
using the appropriate index. So, when defining f, instead of x one uses
x(1) and instead of y, one uses x(2). Also, the solution is stored in a
single variable (X in the example) which (in the example) has two rows,
one for each component of the system.

Finally, notice how Matlab plots each row in a matrix with a dif-
ferent colour, as though it were a list. This makes unnecessary the use
of hold on. —

Exercise 11: Write a function heunvector which implements Heun’s
method for vector differential equations. It should be obvious that the
only difference with Listing 3.2 should be changing the following line

y(:,s) = y(:,s-1) + (x(s) - x(s-1)) * f(x(s-1),y(:,s-1));

for something a bit more complicated (the Heun step of “going forward
like Euler, computing the velocity and then using the mean value of
both velocities at the starting point.”) —

Exercise 12: Using the function heunvector which has just been
defined, plot the approximate solution to the Lotka-Volterra equation
of Example 7. Plot, also, the solution given by Euler’s method and
compare them. Which looks more reasonable? Why? What are the
absolute and relative differences after 12 seconds?

Verify (somehow) that the maxima and minima of each variable
correspond to the quotients of the parameters of the other one. How
could you do this?

You should notice how Heun’s solution looks more periodic than
Euler’s. Actually, this reflects the true solution to the system more ac-
curately, as it is known that the solutions to the Lotka-Volterra equa-
tions are periodic, indeed. —

2. Epidemic models (SIR)

Exercise 13: The SIR epidemic model for an infectious disease fol-
lows the differential equation:

Ṡ(t) = −αS(t)I(t)

İ(t) = −βI(t) + αS(t)I(t)

Ṙ(t) = βI(t)

28 3. ORDINARY DIFFERENTIAL EQUATIONS (II)

for some positive numbers α and β. The variables S, I and R stand
for “susceptible”, “infected” and “removed.” Use the Matlab function
heunvector defined in Exercise 11 to plot several models of this equa-
tion, for different initial values and parameters. An interesting example
is S(0) = 1, I(0) = 0.001, R(0) = 0 and α = 0.1, β = 0.05, time from
0 to 1500 using 2000 points, for example. Compare the evolution of
that system with another one having α = 0.05 and β = 0.01. Does the
system behave differently if α > β or if α < β? In what way?

Compare also the difference between using heunvector and using
eulervector. Which seems more precise? Why? —

Exercise 14: Modify the model in Exercise 13 to allow that some of
the infected people become susceptible, with a coefficient γ. Compare
this model to the previous one, using heunvector. —

Exercise 15: Allow for births in the model of Exercise 14 (i.e. S(t)
increases proportionally to the sum of S(t), I(t) and R(t)) with some
small coefficient δ). Compare this model with the ones of Exercises
14 and 13. Explain the plots and the (remarkable) difference between
R(t) in both previous exercises and this one. —

Exercise 16: Allow for deaths in the model of Exercise 15: let each
of S(t), R(t) and I(t) decrease with different probabilities ε1, ε2 and
ε3, with ε1 = ε3 and ε2 > ε1. Does the model change a lot? Why?
Compare with the previous ones. —

3. Physical systems

Example 9 A simple pendulum without friction can be simulated

using the following (polar) equation

lθ̈ = −g sin(θ)

where θ is the angle with respect to the vertical and l is the (constant)
length of the pendulum. Notice how the mass of the weight is irrelevant.
We can use heunvector to compute an approximation to the solution
of this equation for example, using l = 1, g = 9.81 and two different
initial conditions: θ(0) = pi/4 and θ(0) = pi/3 with initial velocities 0
in both cases, with time going from 0 to 50 in steps of 0.01. The code
in Listing 3.4 shows how.

% Simulation of a pendulum, for two different

% initial conditions. Mass = 1

3. PHYSICAL SYSTEMS 29

% The pendulum equation: theta’’ = - sin(theta)

P = @(t, X) [X(2) ; -sin(X(1))];

% Time:

T=[0:.01:40];

% Initial condition: pi/4

X0=[pi/4; 0];

% Solve

Y = heunvector(P, T, X0);

% Plot both angle Y(1,:) and angular speed Y(2,:)

plot(T, Y)

hold on

% Initial condition: pi/6

X1=[pi/6;0];

% Solve & plot

Y2 = heunvector(P, T, X1);

plot(T, Y2)

Listing 3.4. Simulation of a pendulum with Heun’s method.

—

Exercise 17: Compute approximate solutions to the same systems
as in Example 9 using eulervector and compare. Which seems more
apt? Why? —

Exercise 18: Consider the pendulum of Example 9 but with friction.
Assume friction is proportional to the angular speed (and with opposite
direction), with proportionality constant 0.1. The equation needs to
be rewritten taking into account the mass at the end of the pendulum.
Plot the graph and compare with the previous exercise (use l = 1 ev-
erywhere and the mass of your choice). The effect is called “damping,”
in this case “exponential damping” because the damping term (what
makes the sine waves diminish in amplitude) is exponential. —

Exercise 19: Harmonic motion is defined by the second order differ-
ential equation

ẍ = − k
m
x

for some elasticity constant k and mass m of the moving body. It is
damped if there is a damping term which goes against motion:

ẍ = − k
m
x− rẋ

30 3. ORDINARY DIFFERENTIAL EQUATIONS (II)

for some damping constant r > 0. Study the behaviour of the oscillator
with and without damping, using both eulervector and heunvector.
What happens with eulervector?

What happens if you set r to some negative value? —

Exercise 20: The ballistic equation describes the motion of a body
under gravity. If (x(t), y(t)) is its position vector, then the equation is

ẍ = 0
ÿ = −g.

Given an initial position (0, 0) and speed (1, 1), plot the (x(t), y(t))
coordinates of the corresponding motion for t from 0 to 20 in steps of
0.1. Use heunvector.

What is the differential equation if there is friction and it is propor-
tional to the velocity (but in opposite direction)? Plot the trajectory
corresponding to this motion for the same initial conditions as before.

Finally, compute and plot the trajectory if friction is proportional
to the square of each component of the velocity, in each component.
—

CHAPTER 4

Numerical Integration

Unlike in the theory classes, we are not going to study numerical
differentiation. However, the student should be able to understand and
implement algorithms using both right- and left-sided methods and the
symmetric ones (at least for the first and second order derivatives). It
is possible that one informal practical be used to show examples of the
three methods, for solving ordinary differential equations.

This is one of the simplest practicals, as the topic —numerical
integration— will be covered quickly and only the simplest formulas
will be implemented. All of them are assumed to be known (because
they will have been explained in the theory classes).

1. The simple quadrature formulas

Numerical integration (or quadrature, the classical term) is first
dealt with as the problem of finding a suitable formula for the whole
integration interval. This gives rise to the three most known methods:
the midpoint rule, the trapeze rule and Simpson’s rule. Start with a
function f : [a, b] → R. The following are the three basic quadrature
formulas:

(1) The midpoint rule uses the value of f at the midpoint a+b
2

:∫ b

a

f(x) dx ' (b− a)f

(
a+ b

2

)
.

(2) The trapeze rule uses the value of f at both endpoints:∫ b

a

f(x) dx ' (b− a)
(f(a) + f(b))

2
.

We prefer stating it like this to emphasize that the area is
computed as the width of the interval (b− a) times the mean
value of f at the endpoints.

(3) Simpson’s rule uses three values: at both endpoints and at the
midpoint:∫ b

a

f(x) dx ' (b− a)

(
f(a) + 4f

(
a+b
2

)
+ f(b)

)
6

.

31

32 4. NUMERICAL INTEGRATION

Notice that the denominator 6 is the sum of the coefficients
1 + 4 + 1 at each point.

Example 10 A possible implementation of the midpoint rule, which

receives three parameters, a, b and f (the last one an anonymous func-
tion) is included in listing 4.1. In order for it to define a proper function,
the corresponding file should be called midpoint.m.

% Numerical quadrature using the midpoint rule.

% Input: a, b, f, where

% a, b are real numbers (the endpoints of the integration interval)

% f is an anonymous function

function [v] = midpoint(a, b, f)

v = (b-a).*f((a+b)./2);

end

Listing 4.1. Implementation of the midpoint rule.

A usage example could be:

> f = @(x) cos(x);

> midpoint(0, pi, f)

ans = 0

—

Exercise 21: Implement the trapeze rule in an m-file called trapeze.m.
Use it to compute approximations to the following:

• The integral of tan(x) from x = 0 to x = π/2.
• The integral of ex from x = −1 to x = 1.
• The integral of sin(x) from x = 0 to x = π.
• The integral of cos(x) + sin(x) from x = 0 to x = π.
• The integral of x2 + 2x+ 1 from x = −2 to x = 3.
• The integral of x3 from x = 2 to x = 6.

Use also the function midpoint as defined in example 10 to compute the
same integrals. Use Matlab’s int function to compute the exact values
(or WolframAlpha or your own ability) and compare the accuracy of
both methods. —

Exercise 22: Implement Simpson’s rule in a file called simpson.m

and use it to compute approximations to the integrals in Exercise 21.
Compare the accuracy of this method to that of the other two. Which

2. COMPOSITE RULES 33

is best? Why? Does it always give the best approximation? —

As the reader will have noticed, the above are rules which use a
formula applied to one, two or three points in the interval and approx-
imate the value of the integral on the whole stretch [a, b]. One can
get more precise results dividing [a, b] into a number of subintervals
and applying each formula to each of these. This way one gets the
composite quadrature formulas.

2. Composite rules

Of course, dividing the interval requires somehow knowing how
many subintervals are needed. We shall assume the user provides this
number as an input. Hence, the functions we shall implement will re-
ceive four parameters: the endpoints, the function and another one,
the number of subintervals.

Example 11 For instance, a possible implementation of the com-
posite midpoint rule can be read in listing 4.2. Notice how the sum

operation adds all the values of a vector (in this case the vector f(m)

of values of f at the midpoints).

% Numerical quadrature using the composite midpoint rule.

% Input: a, b, f, n=3, where

% a, b are real numbers (the endpoints of the integration interval)

% f is an anonymous function

% n is the number of subintervals in which to divide [a,b]

function [v] = composite_midpoint(a, b, f, n)

l = (b-a)./n;

% midpoints

a1 = a + l./2;

b1 = b - l./2;

% Can you explain why this is correct?

m = linspace(a1, b1, n);

v = l.*sum(f(m));

end

Listing 4.2. An implementation of the composite
midpoint rule.

—

Exercise 23: Use the code of composite midpoint to compute ap-
proximations to the integrals in Exercise 21, with different values for
the parameter n. Compare the results with the ones obtained before.

34 4. NUMERICAL INTEGRATION

—

Exercise 24: Implement the composite trapeze and Simpson’s rule
(in two different files called, respectively, composite trapeze.m and
composite simpson.m). Use these implementations to compute ap-
proximations to the integrals in Exercise 21. Compare the results. —

Exercise 25: If one uses the composite trapeze rule with 2n subin-
tervals and Simpson’s rule with n (for example, setting n to 6 for the
trapeze rule and to 3 for Simpson’s), one is using the same evaluation
points (verify this). Are the approximations obtained equally good?
Which is better? Why do you think this happens? —

CHAPTER 5

Interpolation

After a brief digression on integration (which may be useful for
computing areas related to solutions of ODEs) we return to the problem
of finding an approximate “solution” to an ODE. All of the methods
explained in Chapter 2 gave numerical approximations to the solution
of an ODE as a list of values at the points of a network on the x−axis.
However, in many instances, values of the solution at points not on
the network will be required (for example, to plot the solution or to
approximate the values at points not on the network). When the values
required fall inside the network, this is known as the interpolation
problem. If the values required fall outside it, one is extrapolating. We
shall mostly deal with the first problem. The second one is hard to
tackle and requires some extra knowledge of the function..

We shall only explain one-dimensional interpolation. Techniques
for more than one dimension obviously exist but they are all related to
the ones we shall explain: a good command of one-dimensional tools
permits an easy grasp of the higher dimensional ones.

Assume a vector x = (x1, . . . , xn) of (ordered) x−coordinates is
given and another one y = (y1, . . . , yn) of the same length represents
the values of a function f at each point of x. The problem under
consideration consists in approximating the values of f at any point
between x1 and xn.

1. Linear interpolation

One of the simplest solutions to the interpolation problem is to draw
line segments between each (xi, yi) and (xi+1, yi+1) for each i and, if
x̃ ∈ [xi, xi+1], approximate the value of f(x̃) as the corresponding line
in the segment. This means using the approximation

f(x̃) ' yi+1 − yi
xi+1 − xi

(x̃− xi) + yi,

having previously found the i such that x̃ ∈ [xi, xi+1]. Notice that there
may be two such i, but the result is the same in either case (why?).

Exercise 26: Implement the above interpolation method. Specifi-
cally, write a file called linear int.m implementing a function linear int

35

36 5. INTERPOLATION

which, given two vectors x and y (corresponding to the x and y above)
and a value x1, returns the value of the linear interpolation at x1 cor-
responding to x and y. A couple of examples of calling could be

> x = [1 2 3 4 5];

> y = [0 2 4.1 6.3 8.7];

> linear_int(x, y, 2.3)

ans = 2.6300

> linear_int(x, y, [2.3 3.5])

ans =

2.6300 5.6400

Notice how the last parameter can be a vector of values on which to
compute the interpolation. —

Exercise 27: Use the function defined in Exercise 26 to plot the
graph of the linear interpolation corresponding to the following clouds
of points:

• The points (1, 2), (2, 3.5), (3, 4.7), (4, 5), (5, 7.2).
• The points (−2, 3), (−1, 3.1), (0, 2.8), (1, 3.5), (2, 4), (3, 5.7).
• On the x−axis, a list of 100 points evenly distributed between

0 and π. On the y−axis, the values of the function sin(100x)
at those points.

—

2. Cubic splines

Linear interpolation is useful mainly due to its simplicity. However,
in most situations, the functions with which one is working are differ-
entiable (and in many cases, several times so), and linear interpolation
does not usually satisfy this condition. To solve this problem, splines
were devised.

As was explained in the theory classes, cubic splines are the most
used and they are the ones we shall implement.

Before proceeding, we shall explain the internal commands Matlab
uses for dealing with cubic splines. Then we shall implement a spline
function in detail.

2.1. The spline and ppval functions. Given a cloud of points
described by the vectors of x− and y−coordinates, say x = (x1, . . . , xn)
and y = (y1, . . . , yn), Matlab can compute different types of splines.
The command for doing so is spline and it takes as input, in its most
basic form, two vectors, x and y. Then:

2. CUBIC SPLINES 37

• If x and y are of the same length, then spline(x,y) returns
the not-a-knot cubic spline interpolating the cloud given by x

and y.
• If y has exactly two more components than x, then the call
spline(x,y) returns the interpolating cubic spline using the
cloud given by x and y(2:end-1) with the condition that the
derivative of the spline at the first point is y(1) and the de-
rivative at the last point is y(end). These splines are called,
for obvious reasons, clamped.

Example 12 Let us work with the first cloud of points in Exercise
26. In this case, x is [1 2 3 4 5] whereas y is [2 3.5 4.7 5 7.2].

• The not-a-knot spline is computed straightaway using spline:

> x = [1 2 3 4 5];

> y = [2 3.5 4.7 5 7.2];

> p = spline(x, y);

The object returned by spline, which we have called p, has
a special nature: it is a piecewise polynomial. In order to
evaluate it, one has to use the function ppval:

> ppval(p, 2.5)

ans = 4.2281

which can be used with vectors as well:

> ppval(p, [1:.33:2.33])

ans =

2.0000 2.4389 2.9510 3.4841 3.9861

and hence, can be used for plotting the actual spline:

> u = linspace(1, 5, 300);

> plot(u, ppval(p,u));

• The clamped cubic spline imposes specific values for the first
derivative at the endpoints. In order to compute it using Mat-
lab one has to add this condition as the first and last values of
the y parameter. For the same cloud of points as above, and
setting the first derivative at the endpoints to 0, one would
write:

> x = [1 2 3 4 5];

> y = [2 3.5 4.7 5 7.2];

> q = spline(x, [0 y 0];

Let us plot q on the same graph as p:

> hold on

> plot(u, ppval(q, u), ’r’);

38 5. INTERPOLATION

What is the difference?
• Take into account that Matlab does not include in its default

toolbox the ability to compute natural splines (those for which
the second derivative at the endpoints is 0). We shall imple-
ment this below.

—

Exercise 28: Describe (in detail) at least two situations in which
linear interpolation should be preferred to cubic splines. Same for the
reverse.

Can you come up with examples in which the natural spline is better
suited than the “not-a-knot”? What about the reverse? —

2.2. Implementing the natural cubic spline. We shall write
a long function implementing the natural cubic spline. From the the-
ory, we know that solving a linear system of equations is required.
However, this system, once the problem is stated properly, has a very
simple structure. We shall solve it using Matlab’s solver. Also, the
function shall return a piecewise defined polynomial, using the mkpp

utility. This section should be read more as a thorough exercise on
Matlab programming than as a useful example.

From polynomials to a linear system. The problem under consid-
eration consists in, given x = (x1, . . . , xn) and y = (y1, . . . , yn), find
polynomials P1(x), . . . , Pn−1(x) (notice that there are n− 1 polynomi-
als, not n) satisfying the following conditions:

(1) Each Pi passes through the points (xi, yi) and (xi+1, yi+1).
(2) At each xi, for i = 2, . . . , n− 1, the derivative of Pi(x) equals

that of Pi−1(x).
(3) At each xi, for i = 2, . . . , n − 1, the second derivative of Pi

equals that of Pi−1(x).

It is easy to check that those conditions give a total of 4(n − 1) − 2
linear equations for the coefficients of the polynomials Pi(x). As there
are 4(n− 1) coefficients, there are two missing equations for a system
with a unique solution. These two equations allow for the different
types of splines (natural, not-a-knot, etc.).

Let us express each polynomial Pi(x) (for i = 2, . . . , n1) as

Pi(x) = ai + bi(x− xi−1) + ci(x− xi−1)2 + di(x− xi−1)3

and each difference
xi − xi−1 = hi

1This is a bit awkward but simplifies the notation.

2. CUBIC SPLINES 39

(for i = 2, . . . , n also). After some algebraic manipulations (which can
be found in the theory or anywhere on the Internet), one arrives at the
following set of equations:

hi−1ci−1 + (2hi−1 + 2hi)ci + hici+1 = 3

(
yi − yi−1

hi
− yi−1 − yi−2

hi−1

)
for i = 3, . . . , n − 1 (this gives n − 1 − 3 + 1 = n − 3 equations, two
less than n − 1, exactly as expected). There are also explicit linear
expressions for each ai, bi and di in terms of the ci. One can easily
check that the equations are independent. Those n − 3 equations can
be written as a linear system Ac = α, where A is the (n− 3)× (n− 1)
matrix

A =

h2 2(h2 + h3) h3 0 . . . 0 0 0
0 h3 2(h3 + h4) h4 . . . 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 . . . hn−2 2(hn−2 + hn−1) hn−1

and c is the vector column of the unknowns (c2, . . . , cn)t, whereas α is

α3

α4
...

αn−1

and each αi (for i = 3, . . . , n− 1) is

(2)
(
αi = 3

(
yi−yi−1

hi
− yi−1−yi−2

hi−1

)
.
)

There are obviously two missing equations for a square system. As we
want to implement the natural spline condition, which reads as d2 = 0
and dn = 0, we need to “translate” these conditions into new equations
involving only the ci coefficients. After some algebraic manipulations,
one obtains the following:

c2 = 0,

hn−1
2

cn−1 + (hn + hn−1)cn =
3

2

(
−yn−1 − yn−2

hn−1
+
yn − yn−1

hn

)
Letting αn = 6(yn − yn−1)/hn and α2 = 0, the complete system is

Ãct = α̃

where Ã is A together with a first row(
1 0 0 . . . 0

)

40 5. INTERPOLATION

and a last row (
0 0 . . . 0 2hn−1 (4hn−1 + 5hn)

)
and α̃ is the same α with α2 = 0 on the first row and αn = 6(yn −
yn−1)/hn.

Writing the system as a Matlab matrix: so far, we have just
written “in human terms” the rows of the linear system to be solved,
and the column corresponding to the independent terms. We now
proceed to write the appropriate Matlab code which describes it.

Before proceeding any further, we know that ai = yi−1 for i =
2, . . . , n, which we can write (recalling that indices in Matlab start at
1, whereas our polynomials start at 2):

a = y(1:end-1);

For the system of equations, we need a matrix, which we shall call
A of size (n− 1)× (n− 1) (remember that there are n− 1 polynomials,
not n). We know that the first row is a 1 followed by n− 2 zeros, the
following n− 3 rows are those of A in Equation 2.2 and the last one is
a list of n− 3 zeros followed by 2hn−1, (4hn−1 + 5hn). The matrix A is
tridiagonal, and its structure can be described as:

• The line below the main diagonal is (h2, h3, . . . , hn−1).
• The line above the main diagonal is (h3, h4, . . . , hn).
• The diagonal is twice the sum of the lines above.

So it turns out that the vector (h2, h3, . . . , hn) will be useful. Recall
that hi = xi − xi−1. If x is the Matlab vector corresponding to the
x−coordinates, then setting

> h = diff(x);

makes h the vector of differences, the one we wish to use. (Notice that
h2 is the first coordinate of h because h2 = x2 − x1).

The command to construct matrices with diagonal values is diag.
It works as follows:

diag(v, k)

will create a square matrix whose k-th diagonal contains the vector v.
If k is missing, it is set to 0. The k-th diagonal is the diagonal row
which is k-steps away from the main diagonal. Thus, the 0−th diagonal
is the main one, the 1−diagonal is the one just to the right of the main
one, the −1−diagonal is the one just to the left, etc. For example,

> diag([2 -1 3], -2)

ans =

0 0 0 0 0

2. CUBIC SPLINES 41

0 0 0 0 0

2 0 0 0 0

0 -1 0 0 0

0 0 3 0 0

This allows for a very fast specification of the matrix Ã in of the linear
system to be solved. The −1−diagonal is

[h(1:end-1) h(end-1)/2]

the 1−diagonal is

[0 h(2:end)]

and the proper diagonal is

[1 2*(h(1:end-1) + h(2:end)) h(end)+h(end-1)]

where end means, in Matlab, the last index of a vector. From these
values, it should be easy to understand that the matrix A of the linear
system to be solved (which is Ã above) can be defined as follows (we
divide the matrix into three “diagonal” ones for clarity):

A1 = diag([h(1:end-2) h(end-1)/2], -1);

A2 = diag([0 h(2:end-1)], 1);

A3 = diag([1 2*(h(1:end-2)+h(2:end-1)) h(end)+h(end-1)]);

A = A1+A2+A3;

The column vector α̃ is defined as follows: recall that the first
element is 0, the next n − 3 are as in Equation 2 and the last one is
6(yn−yn−1)/hn. Thus, letting dy = diff(y), we can write (notice the
dots before the slashes in the second element):

alpha = [0 3*(dy(2:end-1)./h(2:end-1)-dy(1:end-1)./h(1:end-2))

3/2*(-dy(end-1)/h(end-1)+dy(end)/h(end))]’;

Once the system of equations Ãc′ = α̃′ has been properly set up,
one solves it using Matlab’s solver:

c = (A\alpha)’;

The translation of the explicit expressions for b and d (in the theory),
into matlab goes as (where n is the number of interpolation polynomi-
als):

% Initialize b and d

b = zeros(1,n);

d = zeros(1,n);

% unroll all the coefficients as in the theory

k = 1;

while(k<n)

b(k) = (y(k+1)-y(k))/h(k) - h(k) *(c(k+1)+2*c(k))/3;

k=k+1;

42 5. INTERPOLATION

end

d(1:end-1) = diff(c)./(3*h(1:end-1));

% the last b and d have explicit expressions:

b(n) = b(n-1) + h(n-1)*(c(n)+c(n-1));

d(n) = (y(n+1)-y(n)-b(n)*h(n)-c(n)*h(n)^2)/h(n)^3;

At this point, we have computed all the coefficients of the inter-
polating polynomials. The way to define a piecewise-polynomial func-
tion in matlab is using mkpp, which takes as arguments the vector of
x−coordinates defining the intervals on which each polynomial is used
(in our case the same as the x input vector) and a matrix containing
the coefficients of each polynomial relative to xi−1, that is, in our case2:

dn cn bn an
dn−1 cn−1 bn−1 an−1

...
d2 c2 b2 a2

which gives, in matlab:

f = mkpp(x, [d; c; b; a]’);

Putting everything together in a file called natural spline.m, we
get the code of Listing 5.1.

% natural cubic spline: second derivative at both

% endpoints is 0. Input is a pair of lists describing

% the cloud of points.

function [f] = natural_spline(x, y)

n = length(x)-1;

% variables and coefficients for the linear system,

% these are the ordinary names. Initialization

h = diff(x);

dy = diff(y);

F = zeros(n);

a = y(1:end-1);

alpha = [0 3*(dy(2:end-1)./h(2:end-1)-dy(1:end-2)./h(1:end-2)) 3/2*(-dy(

end-1)/h(end-1)+dy(end)/h(end))]’;

A1 = diag([h(1:end-2) h(end-1)/2], -1);

A2 = diag([0 h(2:end-1)], 1);

A3 = diag([1 2*(h(1:end-2)+h(2:end-1)) h(end)+h(end-1)]);

A = A1+A2+A3;

% Solve the c coefficients:

2Important: remember that Matlab understands a vector [d c b a] as a
polynomial taking the coefficients from greatest to lowest degree, in the example,
dx3 + cx2 + bx + a.

2. CUBIC SPLINES 43

c = (A\alpha)’;

% Initialize b and d

b = zeros(1,n);

d = zeros(1,n);

% unroll all the coefficients as in the theory

k = 1;

while(k<n)

b(k) = (y(k+1)-y(k))/h(k) - h(k) *(c(k+1)+2*c(k))/3;

k=k+1;

end

d(1:end-1) = diff(c)./(3*h(1:end-1));

% the last b and d have explicit expressions:

b(n) = b(n-1) + h(n-1)*(c(n)+c(n-1));

d(n) = (y(n+1)-y(n)-b(n)*h(n)-c(n)*h(n)^2)/h(n)^3;

% finally, build the piecewise polynomial (a Matlab function)

% we might implement it by hand, though

f = mkpp(x,[d; c; b ;a]’);

end

Listing 5.1. Function implementing the computation
of the natural spline for a cloud of points.

Example 13 Consider the points (0, 1), (1, 3), (2, 7), (4, 3), (6, 0). The
natural cubic spline passing through them can be computed and plot-
ting, using the function just defined, as follows:

> x=[0 1 2 4 6];

> y=[1 3 7 3 0];

> P=natural_spline(x,y);

> u=[0:.01:6];

> plot(u, ppval(P, u));

Notice how, instead of P(u), one needs to use the function ppval to
evaluate a piecewise defined function. In order to visually verify that
P passes through all the points, one can plot them on top of P :

> hold on;

> plot(x,y,’*r’);

—

Example 14 A more complicated example: let us try to estimate

(visually) the difference between the sine function and a natural cubic
spline, along the period [0, 2π], using 10 points. This could be done as
follows:

44 5. INTERPOLATION

> x=linspace(0, 2*pi, 10);

> y=sin(x);

> Q=natural_spline(x, y);

> u=[0:.01:2*pi];

> clf;

> plot(u, sin(u));

> hold on;

> plot(u, ppval(Q, u), ’r’);

Listing 5.2. Comparison of the graphs of the sine
function and a cubic spline with 10 points.

The graphs should be indistinguishable. This gives an idea of the
power of cubic splines: for sufficiently well-behaved functions, they give
surprisingly good approximations. —

Exercise 29: Matlab has a spline function, as explained above.
Compare the plots of this function with those of the natural spline
for examples 14 and 13. Which gives a better approximation to the
sine function? —

Exercise 30: Let f(x) = cos(exp(x)), for x ∈ [2, 5]. Let P be the
natural spline interpolating the values of f on 10 points from 2 to 5.
Compare the plots of P and of f on that interval. Are they similar?
Are they different? Why do you think that happens? How do you
think you can fix this problem? —

Exercise 31: Let f(x) = exp(cos(x)), for x ∈ [0, 6π]. Let Q be the
natural spline interpolating the values of f on 20 points. Plot both
f and Q on that interval. Where are the most noticeable differences
between those two plots? Can you get a better approximation using
the spline function? Why? —

Exercise 32: Consider the differential equation

y′ =
y

1 + x2
.

Use any of the algorithms defined in Chapter 2 to compute the approx-
imate values of a solution on the interval [0, 5] with initial condition
y(0) = 1 and using a step of size 0.5. Use a natural spline to interpolate
the values of an approximate solution passing through those points.

The true solution to that ODE is y(x) = ceatan(x), for c a constant.
Compute the constant for the initial value y(0) = 1 and compare the
plots of the true solution and the spline. Explain the difference between
both plots: is it due to the nature of the spline or to the approximate

3. LEAST SQUARES INTERPOLATION 45

solution of the ODE? Would the graphs be more similar if more points
were used?

Explain as much as possible. This is a very important exercise.
Perform different computations, use a different number of intermediate
points, etc. . . —

3. Least Squares Interpolation

Given a cloud C of N points and a linear family V (that is, a vector
space) of functions which “are supposed to properly represent the cloud
of points,” the problem of finding the best approximation to the cloud
by a function in V can be understood in different ways. The most
common is the least squares approximation, which was explained in the
theory classes and which can be stated as follows:

Let (x1, y1), . . . , (xN , yN) be the points in C and let {f1, . . . , fn}
be a basis of V . The least squares interpolation problem for C and V
consists in finding coefficients a1, . . . , an such that the number

E(a1, . . . , an) =
N∑
i=1

(a1f1(xi) + · · ·+ anfn(xi)− yi)2

is minimal. That number (which depends, obviously, on the coeffi-
cients) is called the total quadratic error.

There are several ways to solve this problem. However, the one we
explain in theory translates the differential problem (finding a global
minimum) into a system of n linear equations (as may equations as
functions in the basis). The details have been explained in the theory
classes. In the end, the coefficients a1, . . . , an are the solution to the
following linear system:

(3) XX t

a1...
an

 = X

y1
...
yN

(notice that both sides evaluate to column vectors of n components).
The matrix X is

X =

f1(x1) f1(x2) . . . f1(xN)
...

...
. . .

...
fn(x1) f2(x2) . . . fn(xN)

and X t is its transpose. Equation (3) is always (if N > n, which
is almost always an obvious requirement) a compatible system (which
might have non-unique solution in some cases) but it is usually ill-posed.

46 5. INTERPOLATION

Thus, the least squares interpolation problem requires a set of N
points (the cloud to be interpolated) and a family of n functions (with
n < N , as a matter of fact, N is usually large and n small). With these
data, the problem is just a linear system of equations.

Instead of having to compute the matrix X by hand each time
a least-squares interpolation problem arises, we can define a function
which, given the cloud of points and a family of n functions, finds the
coefficients a1, . . . , an.

Example 15 The simplest useful example is the interpolation of a
cloud of points by a linear function. Linear functions have always
the form a+ bx, so that the vector space they span has two generators
f1(x) = 1 and f2(x) = x (there are two values to compute, a and b). Let
the cloud be (1, 2), (2, 2.1), (3, 2.15), (4, 2.41), (5, 2.6). It is easy to guess
that the interpolating line will be approximately y = 0.1(x− 1) + 2 =
1.9 + 0.1x (the slope is approximately 0.1 and the line passes more or
less through the point (1, 2). Let us solve this interpolation problem
using Matlab:

> x=[1 2 3 4 5];

> y=[2 2.1 2.15 2.41 2.6];

> f1=@(x) 1 + x.*0;

> f2=@(x) x;

> X=[f1(x); f2(x)]

X =

1 1 1 1 1

1 2 3 4 5

> A=X*X’

A =

5 15

15 55

> Y=X*y’

Y =

11.260

35.290

> coefs=A\Y

coefs =

1.79900

0.15100

3. LEAST SQUARES INTERPOLATION 47

X Y
1.0 6.20
1.5 9.99
2.0 15.01
2.5 23.23
3.0 32.70
3.5 43.08
4.0 54.01
4.5 65.96
5.0 80.90

Table 1. Data following a quadratic formula.

That is, the linear function which interpolates the cloud of points by
least squares is y = 1.799 + 0.151x, which resembles our guess. —

Remark. Notice that there is a little issue: when defining a func-
tion which returns a constant value f1(x) = 1, one has to “make it
vectorial” by adding some null vector (in this case, 0. ∗ x). Otherwise,
the function would return a number, not a vector (but we need a vector,
with as many components as x).

When doing least squares interpolation, one usually has a much
larger cloud of points (dozens or even hundreds or thousands of points).
This forces one to read the data from a file (entering them by hand is
error-prone and too slow). This can be done using different commands.
The simplest one is load, but we are not going to enter into details.
Use the documentation of Matlab if you are interested.

Example 16 The data in Table 1 comes from an experiment. It is

known that variable Y depends quadratically on variable X (that is,
there is a quadratic formula which relates X to Y). Using least-squares
interpolation, find the most adequate coefficients for the formula.

As we know that Y depends quadratically on X, the vector space
of functions we are dealing with is spanned by 1, x, x2. Let f1 = 1, f2 =
x, f3 = x2. We could use Matlab as follows (omitting the output where
it is irrelevant):

> x=[1:.5:5];

> y=[6.2 9.99 15.01 23.23 32.7 43.08 54.01 65.96 80.9];

> % define the functions:

> f1=@(x) 1+0.*x;

> f2=@(x) x;

> f3=@(x) x.^2;

> % main matrix

48 5. INTERPOLATION

> X=[f1(x); f2(x); f3(x)];

> A=X*X’;

> Y=X*y’;

> % the system is A*a’=Y, use matlab to solve it:

> A\Y

ans =

0.55352

2.27269

2.75766

> % this means that the least squares interpolating

> % polynomial of degree 2 is

> % 0.55352 + 2.27269*x + 2.75766*x.^2

> % plot both the cloud of points and the polynomial

> plot(x,y);

> hold on

> u=[1:.01:5];

> plot(u, 0.55352 + 2.27269.*u + 2.75766*u.^2, ’r’)

Notice how the least squares interpolating polynomial does not pass
through all the points in the cloud (it may even pass through none).
—

Remark 2. The least squares interpolation problem needs not be
only about finding polynomials which fit a cloud of points. Depending
on the linear model, one may have exponential functions, trigonometric
functions, and many other. However, notice that the model must be
linear in order to allow the use of least-squares. Otherwise, one will
most likely run into trouble.

Exercise 33: A new theoretical development has shown that the data
in Table 1 is best described by a cubic function. Use least squares inter-
polation to compute the best-fitting cubic function. Are the coefficients
of degrees 0, 1 and 2 similar to those of Example 16? Does the cubic
polynomial resemble the data better or worse than the quadratic one?

This exercise is interesting because fitting a curve with a polynomial
is, in most cases, something inadvisable, unless the polynomial is of
degree 1 (i.e. a straight line). One should have very strong arguments
in favor of using a polynomial of degree greater than one to fit a curve
(there are some physical laws in which degree 2 and 3 polynomials
appear, however. Give some examples). —

Exercise 34: Table 2 represents data from an experiment. It is
known that the real data follows a function of the form y(x) = a log(x)+
bx + cex, for some a, b and c. Using linear least-squares interpolation,

3. LEAST SQUARES INTERPOLATION 49

X Y
2.0 11.39
2.7 15.31
3.4 18.18
4.1 19.80
4.8 19.76
5.5 15.03
6.2 1.74
6.9 -29.67

Table 2. Data following a log-lin-exp formula.

X Y X Y X Y X Y
10 8.04 10 9.14 10 7.46 8 6.58
8 6.95 8 8.14 8 6.77 8 5.76

13 7.58 13 8.74 13 12.74 8 7.71
9 8.81 9 8.77 9 7.11 8 8.84

11 8.33 11 9.26 11 7.81 8 8.47
14 9.96 14 8.10 14 8.84 8 7.04
6 7.24 6 6.13 6 6.08 8 5.25
4 4.26 4 3.10 4 5.39 19 12.50

12 10.84 12 9.13 12 8.15 8 5.56
7 4.82 7 7.26 7 6.42 8 7.91
5 5.68 5 4.74 5 5.73 8 6.89

Table 3. Anscombe’s quartet.

find a, b and c. Can you think of a physical, social or biological phe-
nomenon following a law of that type? —

Exercise 35: Table 3 contains what is called Anscombe’s quartet.
The four lists are remarkable for several statistical properties they
share. We are just going to focus on the linear least squares inter-
polating line a + bx. For each of the lists, find the best fit. After
finding the fit, plot each of the interpolating lines and each cloud of
points on the same graph.

What can you infer from your results? —

Exercise 36: An experiment computes the value of kinetic energy
from the velocity of a moving object. Table 4 shows the results of five
runs of it with the same object. Give a reasonable value for the mass of
the object from the data. Velocity is given in m/s while E is in Joules.

50 5. INTERPOLATION

v E
1.0 8.05
1.5 16.97
2.3 39.69
2.7 55.58
3.0 66.91

Table 4. Kinetic energy against velocity, output of an experiment.

—

Exercise 37: Table 5 is the outcome of an experiment which consists
in computing the distance traveled by an object after some time. It
is known that the object moves with uniform acceleration and that it
always starts with the same initial velocity. Give reasonable values for
the acceleration and the initial speed. —

t (s) d (m)
1 4.89
2 11.36
3 21.64
4 34.10
5 50.05
6 69.51

Table 5. Distance against time for an experiment.

Exercise 38: The following plot shows the mean price of a can of beer
(in pesetas) at each month from 1960 to 1980 (there are 240 values in
the series). The plot has two remarkable properties: on the one hand,
it “seems to increase with time,” on the other, the price has a wavy
behavior (with local lows and highs at intervals of the same length).
As a matter of fact, minima and maxima happen (approximately) with
a year of difference. This behavior is called “seasonality” (the season
of the year affects the price of commodities: in this case, beer is drunk
more frequently in the Summer, as people are more thirsty, and prices
tend to be higher than in the Winter). How would you model this
graph in order to find a “suitable” fitting function?

One has to be aware that prices are always modeled with products,
not with additions : prices increase by a rate, not by a fixed amount
(things are “more or less expensive” in rate, you would not complain
of a computer costing e 5 more but you would if the loaf of bread had

3. LEAST SQUARES INTERPOLATION 51

1961 1965 1970 1975 1980

20

30

40

50

Year

P
ri

ce
(e

)

that same increase in price). So, the relevant data should not be that in
the graph but its logarithm (which increases and decreases in absolute
values, not relative ones). Hence, one should aim at a least-squares
interpolation of the logarithm of the true values3.

Once logarithms are taken, the curve should be fit (interpolated)
as a linear function with a seasonal (yearly) modification: how would
you perform this interpolation? (One needs to use the sine and cosine
function, but how?). What functions would you use as basis? Why?

The data can be found at http://pfortuny.net/prices.dat. —

3Despite not being completely correct, the fact that the values are much larger
than 0 makes using logarithms and fitting the new curve with least squares useful,
albeit inexact.

CHAPTER 6

Linear Systems of Equations

In the Theory classes several algorithms for solving linear systems
of equations have been explained. Their interest is not only for prob-
lems which can, by themselves, be expressed as linear equations (like
in Statics, for example) but, as the student should have already real-
ized, for solving problems which appear as intermediate steps of others:
mainly, spline interpolation (recall that in order to compute the cubic
spline, solving a tridiagonal system is required), linear least-squares
interpolation. Although we have not covered this in the course, any
attempt to solve a differential equation using implicit methods or the
numerical solution of partial differential equations lead to linear sys-
tems of equations, usually of huge size (think of thousands and millions
of rows).

As the student knows, one can divide the methods of solving linear
systems of equations into two main groups: “exact” methods (those
who aim to produce an exact solution) and “iterative” methods, which
use a fixed-point iteration to approximate the solution step by step.

1. Exact methods

The first exact method, and the most useful for small systems (up
to 4 or 5 equations) is Gauss’s reduction algorithm. This algorithm
will serve us to show some programming techniques in Matlab. One
should be able to reproduce the program from the description of the
algorithm given in the Theory Lecture Notes. We include it for the
sake of completeness in Algorithm 4

Example 17 — Implementation of Gauss’s reduction method in
Matlab. The code in Listing 6.1 includes an implementation of Gauss’s
reduction method in Matlab.

function [L, At, bt] = gauss(A,b)

n = size(A);

m = size(b);

if(n(2) ~= m(1))

warning(’The sizes of A and b do not match’);

return;

end

53

54 6. LINEAR SYSTEMS OF EQUATIONS

Algorithm 4 Gauss’ Algorithm for linear systems

Input: A square matrix A and a vector b, of order n
Output: Either an error message or a matrix Ã and a vector b̃ such
that Ã is upper triangular and the system Ãx = b̃ has the same
solutions as Ax = b

?Start
Ã← A, b̃← b, i← 1
while i < n do

if Ãii = 0 then
return ERROR [division by zero]

end if
[combine rows underneath i with row i]
j ← i+ 1
while j ≤ n do
mji ← Ãji/Ãii
[Next line is usually a loop, careful here]
Ãj ← Ãj −mjiÃi [*]

b̃j ← b̃j −mjib̃i
j ← j + 1

end while
i← i+ 1

end while
return Ã, b̃

At=A; bt=b; L=eye(n);

k=1;

while (k<n(1))

l=k+1;

if(At(k,k) == 0)

warning(’There is a 0 on the diagonal’);

return;

end

% careful with rows & columns:

% L(l,k) means ROW l, COLUMN k

while(l<=n)

L(l,k)=At(l,k)/At(k,k);

% Combining rows is easy in Matlab

At(l,k:n) = [0 At(l,k+1:n) - L(l,k) * At(k,k+1:n)];

bt(l)=bt(l)-bt(k)*L(l,k);

l=l+1;

end

k=k+1;

end

1. EXACT METHODS 55

end

Listing 6.1. Gauss’s method in Matlab.

There are some relevant remarks to be made about the code. To begin
with, notice that i and j are reserved names for Matlab (they both
represent the complex root of unity), so our code, instead of i and j,
uses k and l.

• First of all, the size of the coefficient matrix and the indepen-
dent terms are checked for equality. If they are not, a warning
is shown and the program finishes. The variable n is set to the
number of rows of A.
• Then the output variables are initialized (this must be done at

the beginning to prevent strange errors): they are At, which
holds the final upper triangular matrix, bt, which holds the
final independent terms and L, which is the transformation
matrix.
• Then the main while loop starts (which iterates on the rows of
At), using the variable k, starting at k=1 until k>=n(1) (which
means, until the last-but-one row). Then, for each row:

– The corresponding element At(k,k) is verified to be nonzero.
If it is zero, the algorithm finishes (there is no pivoting
done in this program) with an error message.

– If the diagonal element is nonzero, then for each row under
the k-th one (this is the while l<=n),
∗ The corresponding multiplier is computed and stored

in L(l,k): At(l,k)/At(k,k).
∗ The l-th row of At is updated. The line

At(l,k:n) = [0 At(l,k+1:n) - L(l,k)*At(k,k+1:n)];

does the following: the element At(l,k) is set to 0.
Then the elements At(l, r) are set to the corre-
sponding value of the combination Ãj ← Ãj−mjiÃi.
Notice that the elements to the left of k are already
zero. Why?
∗ Then the independent terms are updated accord-

ingly.
∗ The counter l is increased by one.

– The counter k is increased by one.
• There is no ending statement because all the output variables

have already been computed at this point.

The function thus defined, gauss, returns three values: the lower tri-
angular matrix L (which contains the multipliers), the upper triangular

56 6. LINEAR SYSTEMS OF EQUATIONS

matrix At, which is the reduced matrix and the new vector of indepen-
dent terms bt. In order to solve the initial system Ax = b, one needs
only solve the new one Ãx = b̃ (where Ã is At and b̃ is bt). —

Exercise 39: Use the function gauss defined in listing 6.1 (which
implies your saving it in an adequate file in an adequate directory) to
compute the reduced form of the following systems of equations: —1 2 3

4 5 6
7 8 33

xy
z

 =

2
7
8

 2 −1 3
6 −3 2
0 2 1

x1x2
x3

 =

−1
−1
−1

−1 2 1 3
2 −4 4 1
0 1 2 3
−1 −2 −3 −4

x
y
z
t

 =

−4
3
−2
1

 2x+ 3y + z = 1
z − y = 0

2y + 3x− 2 = z

Exercise 40: Write a function in an m-file of name gauss pivot.m

which implements Gauss’s reduction algorithm with partial pivoting
(i.e. pivoting in rows). The output should include at least the upper
triangular matrix and the transformed vector of independent terms.
Bonus points for returning also the lower triangular and the permuta-
tion matrices. Recall that this algorithm is also called LUP factoriza-
tion. Use this function to compute the reduced form of the systems in
Exercise 39. —

Exercise 41: Using either the code from Listing 6.1 or the one you
produced for Exercise 40, write a new function which explicitly solves
a linear system of equations using Gauss’s method. This requires com-
puting the values of each variable after the reduction step and returning
them as a vector. Call that function gauss solve, write it in an m-file
and use it for solving the systems in Exercise 39. —

2. Iterative algorithms

Iterative algorithms are much simpler to implement, as they only
need an iteration of a simple matrix multiplication. They are also much
faster than exact methods for large systems and can produce high-
quality approximations to the solutions. As a matter of fact, the name
exact methods for Gauss-type algorithms is a misnomer, as rounding
errors are always present and floating-point operations are almost never

2. ITERATIVE ALGORITHMS 57

exact. This makes iterative algorithms as powerful as those methods
and, in real life, much more useful.

Even though they require the computation of the inverse of a ma-
trix, this does not complicate the methods too much because the matrix
to be inverted is “simple” (either a diagonal one, in Jacobi’s or a trian-
gular one for Gauss-Seidel). In what follows, we shall make use of the
inversion utility of Matlab (although, to be honest, we should imple-
ment inversion ourselves, but this would complicate matters too much
to little avail).

2.1. Jacobi’s Method. Given a linear system of equations

(4) Ax = b

Jacobi’s method consists in transforming it into a fixed-point problem
by rewriting A as the sum of a diagonal matrix and another one. Let D
be the diagonal matrix whose diagonal coincides with that of A. Then
A = D +N , where N has only 0 on the diagonal. System (4) is then

(D +N)x = b

If D is invertible, we can rewrite this as

D−1(D +N)x = D−1b,

which, expanding the left hand side gives

x+D−1Nx = D−1b

and finally, moving the second term of the addition to the right hand
side, we get

x = D−1b−D−1Nx.
This means that, if we call f to the transformation

f(x) = D−1b−D−1Nx,
system (4) is equivalent to the fixed-point problem

f(x) = x.

It is known that, under certain conditions, given any initial seed
x0, the iteration x1 = f(x0), xi = f(xi−1) converges to a solution of the
problem. This means that the following steps are a correct description
of Jacobi’s method.

(1) Set x0 to any vector.
(2) Let k = 1, N be a bound for the number of steps and ε a

tolerance.
(3) Let x1 = D−1b−D−1Nx0
(4) While k < N and ‖xk − xk−1‖ > ε do:

58 6. LINEAR SYSTEMS OF EQUATIONS

• k = k + 1
• xk = D−1b−D−1Nxk−1.

(5) If k == N finish with an error (tolerance not reached), other-
wise return xk.

Exercise 42: Implement Jacobi’s method using the rough descrip-
tion above. Call the file jacobi.m and use it to solve the systems of
Exercise 39. Compare the approximate solutions obtained for different
tolerances with those of Exercise 41.

Remark: Notice that both N and ε are required as input to the
function jacobi and that default values should be given for them. —

Exercise 43: Use the rand function to create a 100×100 matrix A and
a 100× 1 vector b. Use the gauss and jacobi functions of exercises 41
and 42 to compute two solutions, x1 and x2. Compare them between
themselves and compare them to any solution found using Matlab’s
solver. Which do you think is better? —

2.2. The Gauss-Seidel Method. The Gauss-Seidel method is
very similar to Jacobi’s. Instead of transforming System (4) using the
diagonal of A, one takes its lower triangular part and writes

(L+M)x = b

where L is lower triangular and M is upper triangular with 0 on its
diagonal. If L is invertible, this equation can be rewritten

L−1(L+M)x = L−1b,

which, after transformations similar to those made for Jacobi’s method,
turns into

x = L−1b− L−1Mx,

which is a fixed-point problem.
Exercise 44: Implement the Gauss-Seidel method using a file called
gauss seidel.m. Use it to solve the systems of Exercise 39 and com-
pare your solutions with those of exercises 41 and 42. —

Exercise 45: Use the random utility of Matlab to create a 100× 100
matrix A and a 100 × 1 vector b. Use the gauss seidel function
of Exercise 44 to compute a solution x1 and the jacobi function of
Exercise 42 to compute another one x2. Compare them. Which is
better? —

CHAPTER 7

Approximate solutions to nonlinear equations

This chapter deals with finding approximate solutions to equations
of one variable:

(5) f(x) = 0

where f is a “reasonably behaved” function. The meaning of this
expression depends on the context but one usually requires f to be at
the very least, continuous.

1. Bisection method

One of the first methods for finding approximate roots of continuous
functions is based on Bolzano’s theorem. Given a continuous function
f : [a, b] → R with f(a)f(b) < 0 (that is, which changes sign between
a and b), there must be a point c ∈ (a, b) such that f(c) = 0. From
this, one infers that either z = (a + b)/2 is a root of f or f satisfies
the same conditions on either the left interval [a, z] or the right one
[z, b]. This lets one repeat the procedure (taking the midpoint) until a
tolerance is reached. This method is called the Bisection algorithm. It
can be described more formally as in Algorithm 5.
Exercise 46: Implement the Bisection algorithm in an m-file called
bisection.m. —

Exercise 47: Use the bisection algorithm to find approximate roots
to the following functions in the specified intervals. Notice that the
algorithm may not work for some of them even though they have roots
in that interval.

f(x) = cos(ex), x ∈ [0, 2]
g(x) = x3 − 2, x ∈ [0, 3]
h(x) = ex − 2 cos(x), x ∈ [0, π]
r(t) = t2 − 1, x ∈ [−2, 2]
s(z) = sin(z) + cos(z), z ∈ [0, 2π]
u(t) = t2 − 3, t ∈ [−2, 2]
f(t) = atan(t− 2), t ∈ [−3, 3]

59

60 7. APPROXIMATE SOLUTIONS TO NONLINEAR EQUATIONS

Algorithm 5 Bisection Algorithm.

Input: A function f(x), a pair of real numbers a, b with f(a)f(b) <
0, a tolerance ε > 0 and a limit of iterations N > 0
Output: either an error message or a real number c between a and
b such that |f(c)| < ε (i.e. an approximate root)

?Precondition
if f(a) 6∈ R of f(b) 6∈ R then

return ERROR
end if

?Start
i← 0

c← a+ b

2
while |f(c)| ≥ ε and i ≤ N do

if f(a)f(c) < 0 then
b← c [interval [a, c]]

else
a← c [interval [c, b]]

end if
i← i+ 1

c← a+ b

2
[middle point]

end while
if i > N then

return ERROR
end if
return c

Can you use a different interval for those functions for which the algo-
rithm does not work in order to find a root of them? —

2. The Newton-Raphson method

The Newton-Raphson method for finding roots of an equation f(x) =
0 requires f to be, at least, differentiable (and hence, continuous). It
can be described as in Algorithm 6.

Example 18 In order to implement the Newton-Raphson method
without using symbolic operations in Matlab, one needs to define a func-
tion whose input includes the seed x0, the function f (as an anonymous
function), its derivative fp (because one is not using symbolic deriva-
tion) and both the tolerance epsilon and the limit for the iterations
N. Listing 7.1 shows a possible implementation.

2. THE NEWTON-RAPHSON METHOD 61

Algorithm 6 Newton-Raphson.

Input: A differentiable function f(x), a seed x0 ∈ R, a tolerance
ε > 0 and a limit for the number of iterations N > 0
Output: Either an error message or a real number c such that
|f(c)| < ε (i.e. an approximate root)

?Start
i← 0
while |f(xi)| ≥ ε and i ≤ N do

xi+1 ← xi −
f(xi)

f ′(xi)
[possible NaN or ∞]

i← i+ 1
end while
if i > N then

return ERROR
end if
c← xi
return c

% Newton-Raphson implementation.

% Returns both the approximate root and the number of

% iterations performed.

% Input:

% f, fp (derivative), x0, epsilon, N

function [z n] = newtonraphson(f, fp, x0, epsilon, N)

n = 0;

xn = x0;

% initialize z to a NaN (i.e. error by default)

z = NaN;

% Both f and fp are anonymous functions

fn = f(xn);

while(abs(fn) >= epsilon && n <= N)

n = n + 1;

fn = f(xn); % memorize to prevent recomputing

% next iteration

xn = xn - fn/fp(xn); % an exception might take place here

end

z = xn;

if(n == N)

warning(’Tolerance not reached.’);

end

end

Listing 7.1. A possible (simple) implementation of the
Newton-Raphson method.

62 7. APPROXIMATE SOLUTIONS TO NONLINEAR EQUATIONS

Notice that, as the function is called newtonraphson, the file should
be called newtonraphson.m. —

Exercise 48: Use the newtonraphson function defined in Example
18 to compute approximate solutions to the functions of Exercise 47.
Use different values for the seed, epsilon and limit of iterations.

Does the Newton-Raphson method converge always? —

Exercise 49: Modify the code of newtonraphson (and create a new
function called newtonraphson plot, and the corresponding file) so
that, at each step, the point (xi, 0) is plotted on a graph, with a big
enough mark. Use this to keep track of different calls to the function
for the equations of Exercise 47. —

Exercise 50: Remark: only do this exercise if you have enough
time to spare. As in Exercise 49, create a new function called
newtonraphson graph which plots not only each (xi, 0) but also the
tangent line from (xi−1, f(xi−1)) to (xi, 0) to visualize the process. Use
the command pause between each plot to wait for the user to press
some key (so that the process is seen step by step). Use this function
for the equations in Exercise 47. —

3. The Secant method

The secant method is a slight modification of the Newton-Raphson
algorithm when the derivative of f is either unknown or too expen-
sive to compute. Instead of using f ′(xi) at each step, the algorithm
approximates that value as

f ′(xi) '
f(xi)− f(xi−1)

xi − xi−1
,

which requires keeping track not only of xi but also of xi−1 at each
step.
Exercise 51: Write a function secant in a file called secant.m which
implements the secant algorithm. Notice that, unlike the Newton-
Raphson function, this requires only an anonymous function f as input
but two seeds x0 and x1 (for example).

Use this secant function to compute approximate roots to the equa-
tions of Exercise 47. —

4. THE FIXED-POINT METHOD 63

4. The fixed-point method

The fixed-point point method is based on the following result

Theorem 1. Let g : [a, b] → [a, b] be a map of [a, b] into itself,
which is continuous and differentiable on [a, b]. If there is a positive
λ < 1 such that for any x ∈ [a, b], |g′(x)| ≤ λ, then there exists one
and only one α ∈ [a, b] for which g(α) = α.

That requires verifying quite a few conditions before it can be used
for solving an equation (and, as a matter of fact, turning that equation
into a fixed-point problem). Essentially, if one starts with

f(x) = 0,

in order to use the fixed-point method one has to transform that equa-
tion into a “fixed-point problem,” that is, an equation of the form

f̃(x) = x

(which means that one is looking for a value c which is fixed by f̃ :

f̃(c) = c, whence the name). The usual transformation is easy

f(x) = 0⇔ f(x) + x = x.

Obviously f(c) = 0 if and only if f(c) + c = c. Thus, generally, f̃(x) =
f(x) + x.

Instead of trying to verify all the necessary conditions in Theorem
1, one may simply try to find a solution to f(x) + x = x, given an
equation f(x) = 0.

Exercise 52: Write a function fixed point which implements the
fixed-point method. The input should be an anonymous function f, a
seed x0, a tolerance epsilon and a limit for the number of iterations
N. The output should be either a warning or error or a number c such
that abs(f(c))<epsilon.

Remark: the iteration for this problem is not just xi+1 = f(xi)
because we are looking for a root of f(x)!

Use this function to compute (if possible) approximate roots to the
equations of Exercise 47. Does it work? When? Why? —

APPENDIX A

Program structure

We describe the basic structure of the function files (.m files imple-
menting Matlab functions) which appear in this course. This is a very
elementary type of file but serves as a simplification of the implemen-
tation of an algorithm in a .m file.

We assume the function is called fName and it has the following:

• Input Parameters: p1, p2, p3, . . . , pn.
• Output Values: o1, o2, . . . , on.

For instance, the Bisection Algorithm requires 5 input parameters:

f: the function of which to find a root,
a: the left endpoint of the interval,
b: the right endpoint,
N: the limit to the number of iterations,
e: the tolerance.

and it may be implemented to give 2 output values:

r: the approximate root,
k: the number of iterations performed.

A program with the input and output described above will have a
structure similar to the code in Listing A.1 and must be saved in a file
called fName.m.

function [o1, o2, ..., on] = fName(p1, p2,, pn)

o1 = reasonable default value

o2 = reasonable default value

% ...

% and so on until all the output values have been initialized

% fi a counter is needed, initialize it here

k = 1

% Some computations may have to be performed before the main

% loop, they would go here. For example: the FIRST iteration

% may have to be carried out BEFORE starting the loop.

% Now a WHILE or FOR loop will come.

% It will generally be a WHILE() unless the number of iterations

65

66 A. PROGRAM STRUCTURE

% or the set of values on which to iterate is already known. Or

% In a WHILE loop there will be several stopping conditions, the

% last one will be of the form

% k < Number of Iterations

% IF THERE IS A COUNTER, obviously

while(CONDITION1 && CONDITION2 ... && CONDITIONn)

% The body of the algorithm goes here, this is

% "The algorithm itself".

% (bisection, Newton-Raphson, Euler...)

%

% Here one may find ifs, assignations, anything

end

% Before finishing, one has to verify that the answer is

% at least coherent:

% If there is a counter and the maximum number of iterations

% has been reached, then one MUST warn the user of this fact

% like this:

if(k >= N) % assuming the maximum number is N

warning(’Maximum number of iterations reached’)

end

% end of the program, do not forget the trailing ’end’

end

Listing A.1. Basic structure of an elementary program.

