
CLASE PL DEL 16 DE FEBRERO DE 2026

PEDRO FORTUNY AYUSO

El contenido de la clase de hoy son los ejercicios 12 y 18, los mismos que se
hicieron en la anterior, pero resueltos mediante el método de Newton-Raphson.
Para poder realizarlo, necesitáis descargar los archivos llamados newtonraphson.m
y newtonraphsonP.m (aunque este segundo solo sirve para “ver” el funcionamiento
del método gráficamente; ambos ejercicios pueden resolverse con el primero). Am-
bos archivos están en mi página web, como “Newton-Raphson” y “Newton-Raphson
con plot”.

Como ejemplo: tratemos de encontrar la primera raíz real de la función
f(x) = ecos(x) − 1.

Para ello utilizaremos newtonraphsonP.m, que nos permite ver cómo va calculando
iterativamente cada punto.

Importante: En teoría, el método de Newton-Raphson ya “conoce” la derivada
de la función. Para usarlo aquí, hay que calcularla. Cada uno calcula las
derivadas como mejor le parece pero deberíais ser capaces de hacerlas a mano
(aunque me da igual cómo las calculéis, siempre que estén bien). En este caso, por
la regla de la cadena:

f ′(x) = − sin(x)ecos(x).

Para utilizar tanto newtonraphson.m como newtonraphsonP.m necesitamos:
• La función f(x) definida en Matlab.
• La función f ′(x) definida en Matlab.
• Una semilla x0.
• Una tolerancia ϵ.
• Un número máximo de iteraciones N .

Antes de nada, conviene dibujar la función. Se crea un nuevo script que llamamos
PL3.m (por ejemplo), y en él se escriben los comandos que se necesitan para esta
práctica. Recuérdese que para ejecutar una serie de comandos de dicho archivo,
basta seleccionarlos y presionar F9.

Definimos la función y un intervalo:
clf; % limpiamos la pantalla: siempre antes de un nuevo grafico
f = @(x) exp(cos(x)) - 1;
I = linspace(0,10,2000); % por ejemplo
plot(I, f(I));
yline(0); % Dibuja el eje OX en negro
La gráfica que aparece será como la de la Figura 1. Como se ve, la primera raíz
positiva está cerca de 1.5. Para hacer una prueba, intentemos utilizar el método
de Newton-Raphson para encontrar dicha raíz, “a lo bruto”, sin pensar. Tomemos
x0 = 0.1. Si se ejecutan los comandos necesarios:
% primero necesito la derivada como una funcion:
fp = @(x) -sin(x).*exp(cos(x)); % EL PUNTO CON EL PRODUCTO!!!!
x0 = 0.1;
tol = 1e-5; % una tolerancia razonable

Fecha: 16 de febrero de 2026.
1

https://pfortuny.net/uniovi.html


2 PEDRO FORTUNY AYUSO

0 2 4 6 8 10

−0.5

0

0.5

1

1.5

Figura 1. La función f(x) = ecos(x) − 1 entre 0 y 10.

0 2 4 6 8 10 12
-1

-0.5

0

0.5

1

1.5

2

Figura 2. Figura tras el comando newtonraphsonP.

N = 100; % un numero maximo razonable
r = newtonraphsonP(f, fp, x0, tol, N) % no pongo ";" para ver r
Debería aparecer una gráfica como la Figura 2. Como se ve, la semilla x0 = 0.1 es
muy mala para el problema en cuestión: la tangente es demasiado horizontal y el
valor de x1 se ha ido ya más lejos que la segunda raíz, y x2 aun más, etc. (se va
tan lejos que ni siquiera está en el intervalo [0, 10]). De hecho, el valor de r es

r = 10.9956 . . .

que es muchísimo más grande que el pedido (que debe de ser menor que 2).
De cualquiera de las dos figuras se deduce que es mucho más útil comenzar con

una semilla ya cercana a la raíz buscada. Por ejemplo, x0 = 1.5:
clf % limpiamos la pantalla grafica
x0 = 1.5; % dejamos todo lo demas igual
plot(I, f(I));
yline(0)
r = newtonraphsonP(f, fp, x0, tol, N)



CLASE PL DEL 16 DE FEBRERO DE 2026 3

Que, como se ve, converge muy rápidamente a un punto cercano a la raíz. De hecho,
en la línea de comandos se puede ver que:

r = 1.5708 . . .

que es lo que debe ser, aproximadamente π/2. Pero debemos asegurarnos de
que es así, esto hay que hacerlo siempre:
f(r)
es 3.6 · 10−12, que es en valor absoluto menor que la tolerancia que hemos exigido
de 10−5.

El resto de ejercicios es igual.
Comandos nuevos de hoy (aparte de los de Newton-Raphson):

• clf: limpia la pantalla gráfica
• yline(a): dibuja una línea horizontal en altura y = a.


