
CALCULUS - PRACTICAL I - INTRODUCTION

PEDRO FORTUNY AYUSO

This practical gives a simple introduction to Matlab.

1. Basic computations

Matlab works mainly with vectors, not with numbers. Another way to looking
at it is saying that it works with lists (in a sense, a vector is no more than a list).
This is the natural and usual way to use it.

1.1. Making lists. There are two main commands for building lists:

linspace: Generates a list of evenly spaced values between two numbers:
linspace(a, b, n) generates a list (vector) of n numbers, evenly spaced
between a and b. Try it for several values of a, b and n.

[a:s:b]: This instruction generates a list of numbers starting at a, going up
to (at most) b and in steps of length s. Try it.

For example, to assign to a variable x the vector of 200 evenly spaced values between
−π and π, one writes:

> x = linspace(-pi, pi, 200);

(For what is the semicolon?).
On the other hand, to assign to y the vector of values between −π and π in steps

of 0.01, one writes:
> y = -pi:.01:pi;

(For what is the semicolon?).
We are not going to insist on these two instructions, they will be used continually

along the course.

1.2. Elementary operations. Let us assign to x the vector of 300 evenly distri-
buted components between −π and π:

> x = linspace(-pi, pi, 300);

and compute, for example, the sine of each of those values:
> y = sin(x);

(notice that the semicolon hides the output). Write y without the semicolon to see
its value:

> y

(a list of 300 numbers, each the sine of the corresponding value of x).
Let us plot y against x (notice that y is a vector and x is another one of the

same length: we are plotting a table):
> plot(x,y);

A window with the graph of the sine function should appear. Notice that simply
using x and y, which are vectors, we have been able to plot the whole family of
pairs (x1, y1), (x2, y2), . . . , (x300, y300). This is what makes Matlab so powerful.

Date: 9 de octubre de 2013.

1

2 PEDRO FORTUNY AYUSO

Drill:

(1) Plot the graph of the function exp(x) for x from −5 to 5, using steps of size
0.03.

(2) Plot the graph of the function x2 − 3x+ 1, for x from −10 to 10 using 300
points. What happens if one writes x^2? An error. Why?

(3) Plot the graph of tan(x)cos(x) for x from −2 to 3 using steps of length
0.025. What happens if one writes tan(x)*cos(x)? An error. Why?

1.3. The dotted (.) operators. As the student has noticed in the previous exam-
ples, if x is a vector one cannot compute x*x (which would be the product of a vec-
tor by itself), nor x^2 (raising to the power 2); an error happens. This is because
element-wise operations (which were the desired ones) require a . (dot).

In order to multiply, divide and rise to a power vectors elementwise one has to
insert a . before the operator.

> a = linspace(-3, 3, 200); b = linspace(-4, 4, 200);

> b = a * b ; % error

> y = a .* b; % correct a×b

> u = a / b; % error

> u = a ./ b; % correct

> v = a ^ 2; % error

> v = a .^ 2; % correct

This must be clear. We (in Calculus) shall use the dot always. Never forget it. This
is unlike in Algebra, where most of the multiplications are matricial, which are
written without the dot.

2. Anonymous functions

The second most powerful property of Matlab is the possibility of defining fun-
ctions easily. Assume that, for whatever reason, we need to use the polynomial
P (x) = 321x2 − 3x+ 1, say for plotting it several times for different sets of points.
Having to write it time and again would be boring and error-prone. To avoid this,
one can define a function representing it, an anonymous function:

> P = @(x) 321.*x.^2 - 3.*x + 1

From now on, P represents the function P (x), the polynomial written above. It can
be used quite easily:

• Plot P between −5 and 5 using 300 points.
• Plot P between −π and 20 with steps of 0,025.
• Compute P (3), P (0), P (2132).

Anonymous functions can be of several variables. For example, f(x, y) = xy −
x2 + y3 (notice the dots!):

> f = @(x,y) x.*y - x.^2 + y.^3;

Computing f(1, 2), f(2, 0), f(−π, 7) is now trivial.

3. Symbolic calculus

In Calculus, one needs to perform symbolic computations many times (limits,
derivatives, integrals. . .). Matlab can handle these but it is necessary to specify the
symbolic variables in advance.

CALCULUS - PRACTICAL I - INTRODUCTION 3

Before proceeding, let us clear all the values of the variables:
> clear all;

(Now neither x nor y nor any of the variables defined above have any value).

Let us compute the limit of
(
1 + 1

n

)n
for n tending to infinite (what is it?). Let

us try it straightaway:
> limit((1+1./n).^n,n,inf)

(inf is the symbol for ∞ in Matlab). This gives an error because Matlab does not
know what n is. We want it to be a symbol, not a value, so we have to specify it:

> syms n

And let us now repeat the instruction above:
> limit((1+1./n).^n,n,inf)

The answer is exp(1), which is what is called e, obviously (or not?).
But there are many more operations that can be performed.
Compute the following:

ĺım
x→0

sin(x)

x
; ĺım

x→π

(x− π)2

tan(x)2
; ĺım

x→1
(x− 1) log(1− x)

ĺım
x→−π

(cos(x)− 1) tan(x+ π); ĺım
x→0

xx; ĺım
x→3

x+ 1

x− 3
.

Derivatives of functions are also easily computed:
> P =@(t) cos(t).*sin(t) - t.^3 + exp(t).*t

defines an anonymous function. If we want to compute its derivative, we need a
symbolic variable first (say u):

> syms u

and now we just need to compute the derivative:
> diff(P(u),u)

the second derivative:
> diff(P(u),u,2)

the third one:
> diff(P(u),u,3)

etc.

3.1. From symbolic to anonymous. In older (which are the ones we are using)
versions of Matlab, there is no way to evaluate a symbolic function at a point. For
example, let Q be the symbolic derivative of P above:

> syms u; Q = diff(P(u),u)

and let us try to evaluate it at 3:
> Q(3)

gives an error. In order to obtain the equivalent anonymous function, the method
matlabFunction is used. Thus,

> Q n = matlabFunction(Q)

creates the function Q n, which is the anonymous equivalent of the symbolic one Q.
This anonymous version can be evaluated:

> Q n(3)

gives its value at 3.

4 PEDRO FORTUNY AYUSO

4. Exercises

Exercise 1. Given

f(x) = tan(x)x3 − cos(x) +
x+ 1

x2 + 1
,

do the following:

(1) Define it as an anonymous function.
(2) Plot its graph between −4 and 4 using 300 points.
(3) Plot its graph between −10 and 10 in steps of 0.01.
(4) Compute its limits for x tending to −∞, +∞, 0 and 1.
(5) Compute its first, second and fourth derivatives.

Exercise 2. Same for

g(x) =
tan(x)

sin(x/2)

h(u) = (eu − 1) log(|u|+ ,01)

k(u) = u3 − u7

l(v) =
v

v2 + 1

m(t) =
1

t4 + 1

Exercise 3. Plot, on the same graph, the following functions (choosing freely
their domains, etc.):

f(x) = sin(x) cos(x), g(x) = exp(x)/10.

Same (on a different graph) for:

f(u) = u2 − 2u+ 1, g(t) = exp(−t)/10.

In order to perform these tasks, one uses the instruction hold on, which tells Matlab
not to use a new graph for the next plots. The alternative hold off tells Matlab to
use a new graph for each plot. In order to clear the graphical space, one uses clf.

Exercise 4. Plot each of the four functions of the previous exercise in a single
figure, all figures inside the same window. Use the subplot command for doing
this. Use a different domain for each function.

