Basics

- \([a:s:b]\) — Vector from \(a\) to \(b\) in steps of length \(s\).
- \(\text{linspace}(a,b,n)\) — Vector of \(n\) equidistributed elements from \(a\) to \(b\).
- \(\pi, \exp(1)\) — Values of \(\pi\) and \(e\) \((3.14159\ldots, 2.71828\ldots)\).
- \(\text{clear}, \text{clear}(x)\) — Clear all variables, or only \(x\).
- \(\text{whos}, \text{who}\) — Describe or list all the defined variables.
- \(\text{double}(x)\) — Describe or list all the defined variables.

Arithmetic and logical operations

- \(+, -, *, /\) — Basic operations with numbers and matrices.
- \(\sim\) — Raise to a power: \(a^b = a^b\).
- \(*, \div, ^\) — Multiply, divide and power element by element.
- \&\& || ~ — Logical operators \(\&\& \), \(||\), \(~\).
- \(\text{all}, \text{any}\) — Verify whether all \((\text{all})\) or some \((\text{any})\) of the elements of a vector satisfy a condition: \(\text{any}(x>0)\): is any of the elements of \(x\) greater than 0?.

Vectors (and matrices)

- \(\text{linspace}(a,b,n)\) — Vector of \(n\) equidistributed numbers between \(a\) and \(b\).
- \([a:s:b]\) — Vector of numbers from \(a\) to \(b\) in steps of length \(s\).
- \(\text{length}(v)\) — Length (number of elements) of vector \(v\).
- \(\text{size}(M)\) — Size \((\text{rows} \times \text{columns})\) of \(M\).
- \(\text{zeros}(n,m)\) — Matrix full of 0s of \(n\) rows and \(m\) columns. If \(m\) is missing, square matrix of size \(n \times n\).
- \(\text{ones}(n,m)\) — Matrix full of 1s of \(n\) rows and \(m\) columns.
- \(\text{eye}(n)\) — Identity matrix of rank \(n\).
- \(\text{eye}(n,m)\) — Matrix of size \(n \times m\) such that the main diagonal is full of 1s and the other elements are 0.
- \(\text{diag}(v)\) — Square diagonal matrix with \(v\) in the diagonal.
- \(\text{rand}(n,m)\) — Random matrix of \(n\) rows and \(m\) columns. The elements are between 0 and 1.

Accessing elements of vectors (matrices)

If \(x\) is a vector

- \(x(r)\) — Element \(r\)-th of \(x\).
- \(x(r:s)\) — Elements from \(r\)-th to \(s\)-th of vector \(x\).
- \(x(r:end)\) — Elements from \(r\)-th to the last one of vector \(x\).
- \(x(:)\) — All the elements of \(x\).

If \(A\) is a matrix

- \(A(m,n)\) — Element \(m,n\) of \(A\).
- \(A(a:b,c:d)\) — Submatrix from row \(a\) to row \(b\) and from col. \(c\) to col. \(d\) of \(A\).
- \(A(a,:), A(:,b)\) — The whole row \(a\) or the whole column \(b\) of \(A\).
- \(\text{diag}(A)\) — Elements on the main diagonal of \(A\).

Functions and utilities

- \(\exp, \log, \log10\) — Exponential, logarithm and base 10 logarithm. So, \(\exp(x)\): exponential of every element of \(x\).

Function Definition

- \(f = @(x) \sin(x) - \exp(x) \cdot x^2\) — Defines function \(f\), of one variable, whose value for \(x\) is \(\sin(x) - e^x \cdot x^2\) (Always use \(\cdot, / \) and \(^\).)
- \(f = @(x,y,z) x \cdot y - z^2 \cdot y / x\) — Defines function \(f\) of 3 variables, whose value for \((x,y,z)\) is \(xy - z^2y/x\). (Always use \(\cdot, / \) and \(^\).

Plots

- \(\text{clf}, \text{cla}\) — Clear the graphical window (\(\text{clf}\)) or the active figure (\(\text{cla}\)).
- \(\text{hold on}, \text{hold off}\) — Turns on/off the overplotting toggle: \(\text{hold on}\) turns it on, \(\text{hold off}\) turns it off.
- \(\text{plot}(y)\) — If \(y\) is a vector, plot the sequence of values of \(y\).
- \(\text{plot}(x,y)\) — If \(x\) and \(y\) are vectors of the same length, plot the values of \(y\) against those of \(x\).
- \(\text{plot}(x,f(x))\) — If \(x\) is a vector and \(f\) a function, plot the points \((x,f(x))\).
- \(\text{subplot}(n,m,i)\) — Divide the graphic screen into \(n\) rows \(m\) columns and select the \(i\)-th one for plotting on it at the next call of \(\text{plot}\).
- \(\text{ezplot}(f(x))\) — If \(f(x)\) is a function of a variable, plot its graph.
- \(\text{ezplot}(f(x,y))\) — If \(f(x,y)\) is a function of two variables, plot the set \(f(x,y) = 0\).
- \(\text{axis}([x0, x1, y0, y1])\) — Redraw all the plots using the rectangle [\(x0, x1\)\(\times\)[\(y0, y1\)].
Matlab cheat sheet for Calculus - Pedro Fortuny Ayuso - Uniovi - September 23, 2013

\[\text{xlim([x0 x1]), ylim([y0 y1])} \] — Redraw a plot for \(x \) between \(x_0 \) and \(x_1 \) (or for \(y \) between \(y_0 \) and \(y_1 \)).

Symbolic Computations

\[\text{syms x y t} \] — Declare the variables \(x, y \) and \(t \) as symbolic.

\[\text{f=x.^2+cos(y)} \] — Define \(f \) as the symbolic function \(x^2 + \cos(y) \) in the variables \(x, y \) contained in the expression. Previously, \text{syms x y} should have been run.

\[\text{g=matlabFunction(f)} \] — If \(f \) is a symbolic function, define \(g \) as the equivalent anonymous (“with \(@ \)”) one.

\[\text{solve(expr, x)} \] — If \(\text{expr} \) is a symbolic expression in the variable \(x \), solve the equation \(\text{expr} = 0 \). Returns a column vector containing a solution in each row. These can be given in floating point or as exact expression (use \text{double} for the values). Ex.: \text{syms x; solve(x.^2 - 1, x);}

\[\text{ppval(p, x)} \] — Value of the polynomial expression \(v_n a_n + \cdots + v_1 a_1 + a_0 \) (notice that the exponents go from \(n-1 \) to 0).

\[\text{roots(v)} \] — (Approximate) Roots of the polynomial \(v_n x^n + \cdots + v_1 x + v_0 \).

\[\text{polyderiv(v)} \] — Derivative (as a vector representing a polynomial) of \(v_n x^n + \cdots + v_1 x + v_0 \), that is, \([(n-1)v_n, \ldots, 2v_2, v_1] \).

\[\text{polyint(v)} \] — Integral (as a vector representing a polynomial) of \(v_n x^n + \cdots + v_1 x + v_0 \), that is, \([v_1/(n-1), \ldots, v_{n-2}/2, v_{n-1}, 0] \): the constant is 0.

Advanced matrix operations

\[\text{inv(M)} \] — Inverse of a square matrix \(M \) (if it exists).

\(\backslash \) — Solve a linear system: \(A \backslash b \) solves the system \(A x = b \) (approximately).

\[\text{[A B] = lu(M)} \] — LU factorization of matrix \(M \): that is, the returned values satisfy \(AB = M \), \(A \) is lower triangular with 1 on its diagonal and \(B \) is upper triangular.

Numerical computations

In the following commands, \(v \) is a vector: \(v=[v_1, \ldots, v_n] \).

\[\text{sum(v), prod(v)} \] — Sum and product of the elements of \(v \), \(v \).

\[\text{mean(v), var(v)} \] — Mean and variance of the elements \(v \).

\[\text{diff(v)} \] — Successive differences of \(v \). (notice that the exponents go from \(n-1 \) to 0).

\[\text{polyval(v,a)} \] — Value of the polynomial expression \(v_n a_n + \cdots + v_1 a_1 + v_0 \) (notice that the exponents go from \(n-1 \) to 0).

\[\text{roots(v)} \] — (Approximate) Roots of the polynomial \(v_n x^n + \cdots + v_1 x + v_0 \).

\[\text{polyderiv(v)} \] — Derivative (as a vector representing a polynomial) of \(v_n x^n + \cdots + v_1 x + v_0 \), that is, \([(n-1)v_n, \ldots, 2v_2, v_1] \).

\[\text{polyint(v)} \] — Integral (as a vector representing a polynomial) of \(v_n x^n + \cdots + v_1 x + v_0 \), that is, \([v_1/(n-1), \ldots, v_{n-2}/2, v_{n-1}, 0] \): the constant is 0.

Interpolation &c

In the following commands, \(u \) and \(v \) are vectors of the same length.

\[\text{interpl(u, v)} \] — Lagrange interpolating polynomial for the cloud of points \((u, v) \), as a vector \([v_1, \ldots, v_n]\) (which represents as a polynomial of degree \(n-1 \)).

\[\text{polyfit(x,y,n)} \] — Polynomial of degree \(n \) minimizing the quadratic error with respect to the cloud of points \((u, v) \).

\[\text{polyval}(p, x) \] — Value of the polynomial expression \(v_n a_n + \cdots + v_1 a_1 + a_0 \) (notice that the exponents go from \(n-1 \) to 0).

\[\text{roots(v)} \] — (Approximate) Roots of the polynomial \(v_n x^n + \cdots + v_1 x + v_0 \).

\[\text{polyderiv(v)} \] — Derivative (as a vector representing a polynomial) of \(v_n x^n + \cdots + v_1 x + v_0 \), that is, \([(n-1)v_n, \ldots, 2v_2, v_1] \).

\[\text{polyint(v)} \] — Integral (as a vector representing a polynomial) of \(v_n x^n + \cdots + v_1 x + v_0 \), that is, \([v_1/(n-1), \ldots, v_{n-2}/2, v_{n-1}, 0] \): the constant is 0.

In the following commands, \(v \) is a vector: \(v=[v_1, \ldots, v_n] \).

\[\text{sum(v), prod(v)} \] — Sum and product of the elements of \(v \), \(v \).

\[\text{mean(v), var(v)} \] — Mean and variance of the elements \(v \).

\[\text{diff(v)} \] — Successive differences of \(v \). (notice that the exponents go from \(n-1 \) to 0).

\[\text{polyval(v,a)} \] — Value of the polynomial expression \(v_n a_n + \cdots + v_1 a_1 + v_0 \) (notice that the exponents go from \(n-1 \) to 0).

\[\text{roots(v)} \] — (Approximate) Roots of the polynomial \(v_n x^n + \cdots + v_1 x + v_0 \).

\[\text{polyderiv(v)} \] — Derivative (as a vector representing a polynomial) of \(v_n x^n + \cdots + v_1 x + v_0 \), that is, \([(n-1)v_n, \ldots, 2v_2, v_1] \).

\[\text{polyint(v)} \] — Integral (as a vector representing a polynomial) of \(v_n x^n + \cdots + v_1 x + v_0 \), that is, \([v_1/(n-1), \ldots, v_{n-2}/2, v_{n-1}, 0] \): the constant is 0.

Polynomial operations

In the following commands, \(v \) is a vector: \(v=[v_1, \ldots, v_n] \).

\[\text{polyval(v,a)} \] — Value of the polynomial expression \(v_n a_n + \cdots + v_1 a_1 + v_0 \) (notice that the exponents go from \(n-1 \) to 0).

\[\text{roots(v)} \] — (Approximate) Roots of the polynomial \(v_n x^n + \cdots + v_1 x + v_0 \).

\[\text{polyderiv(v)} \] — Derivative (as a vector representing a polynomial) of \(v_n x^n + \cdots + v_1 x + v_0 \), that is, \([(n-1)v_n, \ldots, 2v_2, v_1] \).

\[\text{polyint(v)} \] — Integral (as a vector representing a polynomial) of \(v_n x^n + \cdots + v_1 x + v_0 \), that is, \([v_1/(n-1), \ldots, v_{n-2}/2, v_{n-1}, 0] \): the constant is 0.